Title: Singularity resolution in loop quantum gravity: Emergence of non-Riemannian spacetimes

Date: Nov 10, 2016 02:30 PM

URL: http://pirsa.org/16110049

Abstract: It is a common expectation in quantum gravity that the fundamental nature of space-time would be radically different from the smooth continuum of classical general relativity. In this talk it shall be shown that a quantum modification from loop quantum gravity crucial for singularity resolution is also responsible for deforming the underlying space-time in a manner which cannot be realized using classical geometric structures. With the minimum requirement that the quantum theory satisfies a well-defined notion of covariance explicit midisuperspace models manifesting such non-Riemannian space-times shall be shown to exhibit the physical phenomenon of non-singular signature change. Robustness and implications of this effect shall also be briefly discussed.

Pirsa: 16110049 Page 1/29

Singularity resolution in loop quantum gravity: Emergence of non-Riemannian spacetimes

Suddhasattwa Brahma

Center for Field Theory and Particle Physics Fudan University

S.B., 1411.3661

M. Bojowald, S.B., U. Büyükçam & F. D'Ambrosio, 1610.08355
M. Bojowald, S.B., & J. Reyes, 1507.00329
M. Bojowald & S.B., 1407.4444, 1507.00679, 1610.08850, 1610.08850
J. Ben Achour, S.B., J. Grain & A. Marcianò, 1608.07314, 1610.07467

November 10, 2016

Pirsa: 16110049 Page 2/29

Pirsa: 16110049

Big Picture

- \rightarrow We work with midisuperspace models in LQG:
 - Symmetry reduced model (spherically symmetric gravity models or Gowdy systems) simple enough playground to test ideas of LQG yet shares some features of full (3 + 1)-d gravity such as inhomogeneity and/or anisotropy.
 - Quantization of such models exhibit subtle features of the full theory such as singularity resolution.
 - Has interesting implications for physical (early-universe) cosmology and black hole models.

However, important to check consistency conditions of such quantizations \Rightarrow An important criterion for anomaly-freedom is that the canonical quantization respects some notion of general covariance.

Suddhasattwa Brahma

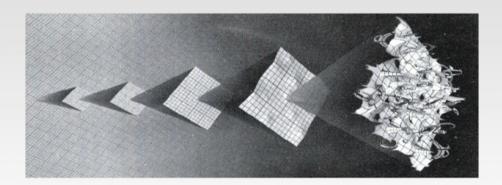
Non-Riemannian spacetimes in LQG

2/23

Pirsa: 16110049 Page 4/29

Big Picture

- \rightarrow Use covariance as a guiding principle to incorporate nontrivial quantum modifications from LQG \Rightarrow Leads to some deformed notion of underlying symmetries in background independent quantizations.
- → Emergence of non-Riemannian space time structures ⇒ Consequences of such non-classical backgounds.
- \rightarrow However, several obstructions when quantizing models with local physical degrees of freedom due to such deformations \Rightarrow A challenge is to avoid them in a consistent fashion.



Picture from the blog 'Faithful to Science'.

Suddhasattwa Brahma

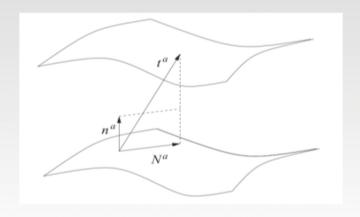
Non-Riemannian spacetimes in LQG

3/23

Pirsa: 16110049 Page 5/29

Covariance in canonical gravity

- → Why is general covariance an important consistency condition in the canonical formulation?
 - In the Lagrangian formulation, space and time are treated equally and on the same footing.
 - In the Hamiltonian formulation, split space and time by using an arbitrary (time) function to foliate globally hyperbolic spacetime.
 - À priori, covariance not manifest.



Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

Is covariance lost due to splitting?

NO!

Hamiltonian for GR:

$$H_{
m grav}^{
m tot} = \int {
m d}^3 x \left(N C_{
m grav} + N^a C_a^{
m grav} - \Lambda^i \mathcal{G}_i \right)$$

where C_{grav} , C_a^{grav} & \mathcal{G}_i are the 'Hamiltonian', 'Diffeomorphism' and 'Gauss' Constraints respectively.

- Constraints are first-class and thus generate gauge transformations, which do not change the physical solutions.
- Hamiltonian Constraint → time, Diffeomorphism Constraint → spatial co-ordinates, Gauss Constraint → rotation of triads (local frame).
- ullet Once these constraints are satisfied, the formalism is space-time covariant, even though we started with slicing of space-time by a time function t.
- The classical constraints satisfy the (Dirac) hypersurface deformation algebra.

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

5/23

Pirsa: 16110049 Page 7/29

Pirsa: 16110049

Covariance is retained - I

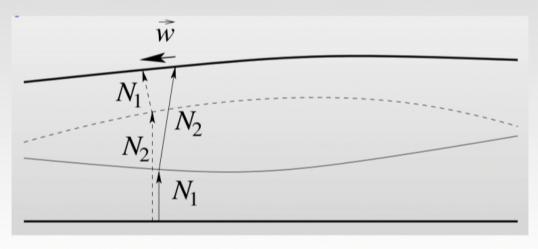
 \rightarrow Hypersurface deformation algebra (HDA) of classical space-time (generalization of local Poincaré algebra):

$$\{S(w_1), S(w_1)\} = S(\mathcal{L}_{w_1} w_2)$$

$$\{T(N), S(w)\} = -T(\mathcal{L}_w N)$$

$$\{T(N_1), T(N_2)\} = S(\sharp_q (N_1 dN_2 - N_2 dN_1))$$

with N: function on space, w: vector field and q: metric on spatial slice.



Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

Covariance is retained - II

- → [Dirac, 1951]: Invariance under Hypersurface Deformation Algebra implies general covariance.
 - The Hamiltonian and Diffeomorphism Constraints (as derived from GR) satisfy the hypersurface deformation algebra.
 - Gauge transformations represent coordinate freedom: space-time Lie derivative of a function given by $\{f, H[\epsilon] + D[\xi^a]\} = \mathcal{L}_{(\epsilon/N,\xi^a+\epsilon N^a/N)}f$ if constraints are satisfied (time direction $t^a = Nn^a + N^a$).
- → [Hojman, Kukař & Teitelboim, 1974-76]: Second-order field equations invariant under hypersurface deformation algebra must equal Einstein's equation ⇒ Slicing Independence.
- \rightarrow Off-shell property \Rightarrow not only true for solutions of GR \Leftrightarrow any metric can be used to contract indices in the action, not necessarily only solutions of Einstein's equations.

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

Quantum modifications to spacetime structure

→ Both the Lagrangian density as well as the measure may be subject to quantum corrections

$$S[g] = \frac{1}{2\kappa} \int \mathrm{d}^4 x \sqrt{|\det g|} \, (R[g] + \cdots)$$

- \rightarrow Canonical quantization indicates spacetime structures which may not have an underlying (pseudo)-Riemannian geometry any longer \Rightarrow no metric structure may exist in higher curvature regimes.
- → (Loop) quantum gravity only an 'effective', 'coarse-grained' picture of some exotic microscopic structure (noncommutative geometry, nonassociatve geometry, fractal spacetimes . . . ?)

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

What is a generally covariant quantization?

- → Two conditions necessary [M. Bojowald, S.B. and J. Reyes, 2015]:
 - The classical constraints must be replaced by generators which still have closed brackets, computed either as Poisson brackets in an effective theory, or as commutators of operators in a quantization.
 - Brackets of the new generators of gauge transformations must have a classical limit identical with the classical Dirac algebra.
- → Stronger conditions than anomaly free reformulated systems ⇒ Not sufficient to have a closed quantum (or effective) algebra, but also a well-defined classical limit. Examples:
 - C = H + D; $\{C, C\} = 0$ [R. Gambini and J. Pullin, 2013].
 - ullet $\{H,H\}=\{D',D'\}$ [Tomlin and Varadarajan, 2012].

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

9/23

Pirsa: 16110049 Page 12/29

What is a generally covariant quantization?

- → Two conditions necessary [M. Bojowald, S.B. and J. Reyes, 2015]:
 - The classical constraints must be replaced by generators which still have closed brackets, computed either as Poisson brackets in an effective theory, or as commutators of operators in a quantization.
 - Brackets of the new generators of gauge transformations must have a classical limit identical with the classical Dirac algebra.
- \rightarrow Stronger conditions than anomaly free reformulated systems \Rightarrow Not sufficient to have a closed quantum (or effective) algebra, but also a well-defined classical limit. Examples:
 - C = H + D; $\{C, C\} = 0$ [R. Gambini and J. Pullin, 2013].
 - $\{H,H\}=\{D',D'\}$ [Tomlin and Varadarajan, 2012].

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

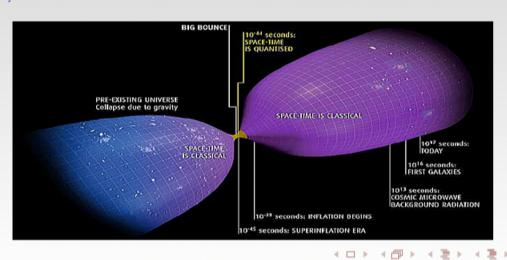
9/23

Pirsa: 16110049

Singularity resolution in LQG

 \rightarrow Crucial feature of singularity resolution in models of LQG \Rightarrow Polymerization of connection components to parameterize holonomy modifications $K \rightarrow f(K)$ (Usual choice of $\delta^{-1} \sin(\delta K)$ for curvature regularization in lowest spin representation).

- \rightarrow Examples:
 - LQC [M. Bojowald, 2001; A. Ashtekar, T. Pawloski and P. Singh, 2006; ...]
 - Black hole models [R. Gambini and J. Pullin, 2013; A. Corichi, J. Olmedo and S. Rastgoo].

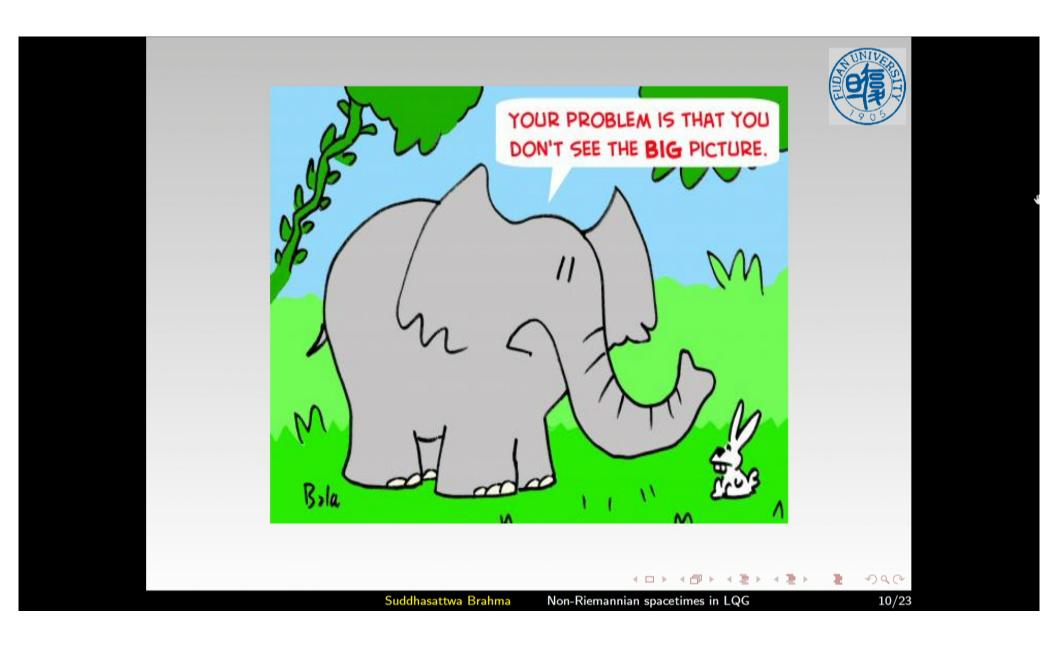


Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

10/23

Pirsa: 16110049 Page 14/29



Pirsa: 16110049 Page 15/29

Recap: Anomaly problem in quantum gravity

 \rightarrow A first class system of constraints (f_{ij}^{k} are phase-space functions for gravity):

$$\{C_i,C_j\}=f_{ij}^kC_k$$

 \rightarrow The constraints are turned into quantum operators (or *effective* constraints) by including quantum corrections:

$$C_i \xrightarrow{\text{quantum corrections}} \hat{C}_i$$

In particular, consider holonomy corrections from LQG – at the heart of singularity resolution.

→ Anomaly freedom implies that the quantum version obeys

$$[\hat{C}_i,\hat{C}_j]\sim \hat{g}_{ij}^k\,\hat{C}_k$$

→ Classical limit of the quantum constraint algebra must reproduce hypersurface deformation algebra.

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

Deformed Covariance - I

 \rightarrow Vacuum spherically symmetric model: [S.B., 2014; M. Bojowald & S.B., 2015; J. Reyes, 2009]

- Two canonical pairs (K_{ϕ}, E^{ϕ}) and (K_{x}, E^{x}) , with $ds^{2} = \frac{(E^{\phi})^{2}}{|E^{x}|} dx^{2} + |E^{x}| d\Omega^{2}$.
- Implement local holonomy corrections through polymerization: $K_{\phi} \to f(K_{\phi})$ (Keep function arbitrary for our purposes to allow for quantization ambiguities).
- The constraint algebra is closed, but deformed (for the structure function).

$$[H[N_1], H[N_2]] = D\left[\beta q^{ab} (N_1 \nabla_b N_2 - N_2 \nabla_b N_1)\right]$$

 Deformation function second derivative of holonomy correction function → "Signature Change" around maxima of the bounded function.

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

Deformed covariance - II

- \rightarrow Consistent deformation \Rightarrow no gauge conditions broken.
- \rightarrow Once β changes sign, HDA has the same sign as for Euclidean gravity.
- \rightarrow No effective line element available on standard manifold \Rightarrow dx^a in ds² = \tilde{q}_{ab} dx^adx^b does not transform under the same deformed gauge transformations as \tilde{q}_{ab} .

Field redefinition can absorb β to give standard HDA brackets as long as β does not change sign.

- → 'Signature change' resolves classical singularity ⇒ New model of quantum spacetime with no Riemannian structure.
- → Treat Hamiltonian formulation as the fundamental theory and can evaluate all canonical observables of the deformed gauge theory.

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

13/23

Pirsa: 16110049 Page 18/29

HDA as a Lie algebroid

- \rightarrow Lie algebroid: $(A, [., .]_A, \rho)$ with $\rho : \Gamma(A) \rightarrow \Gamma(TB)$, such that ρ satisfies a homomorphism of Lie algebras and a Leibnitz identity.
- \rightarrow Hypersurface deformation brackets form a Lie algebroid \rightarrow Phase space (q_{ab}, K^{ab}) forms base manifold \rightarrow Lagrangian multipliers (N, N^a) forms $(4 \times \infty)$ —dimensional fibers.
- \rightarrow Lie algebroid morphisms can change the deformation function $\beta(q_{ab}, K^{ab})$: [M. Bojowald, S.B., U. Büyükçam & F. D'Ambrosio, 2016]
 - $q_{ab} \mapsto |\beta|^{-1} q_{ab}$ generated by base transformations.
 - $N \mapsto \sqrt{|\beta|^{-1}}N$ generated by fiber maps (same as a non-standard normal for β spatially constant).

 \rightarrow No algebroid morphisms can remove $\operatorname{sgn}(\beta) \Rightarrow$ No Riemannian structure when β changes sign.

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

14/23

Pirsa: 16110049 Page 19/29

Ubiquitousness of signature change in LQG

- → Similar conclusions for loop quantization of cosmological perturbations with holonomy modifications. [A. Barrau, T. Cailleteau, L. Linsefors & J. Grain, 2012; M. Bojowald & Mielczarek, 2015]
- \rightarrow Loop quantization of the (1+1)-dimensional CGHS black hole [M. Bojowald & S.B., 2016]
 - Classical singularity resolved.
 - Structure functions get deformed \Rightarrow nontrivial to prove that the deformation function changes sign but has been shown to be true.
- → Generalized midisuperspace model considered [M. Bojowald & S.B., 2016]
 - One inhomogeneous direction assumed for the model (special cases: Schwarzschild black hole, Gowdy models, CGHS black hole, 2-dimensional dilaton gravity etc.)
 - Triad terms not fixed according to specific models but any term with proper density weight and up to second order derivatives considered.
 - Holonomy modifications necessarily leads to signature change.

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

15/23

Pirsa: 16110049 Page 20/29

(Partial) No-Go Theorems!

[M. Bojowald, S.B. & J. Reyes, 2015; M. Bojowald & S.B., 2015]

- → Theories with local degrees of freedom such as spherical symmetry with matter OR Gowdy models → Implement holonomy corrections
 → Difficult to attain closure of the algebra.
 - Very general form of modification functions assumed.
 - Poisson structure after polymerization assumed to be of the form $\{f(K_{\phi})(x), E^{\phi}(y)\} = G\dot{f}\delta(x, y).$
- \rightarrow For instance, in the spherical symmetry case, $[H_{\rm grav}, H_{\rm grav}] = \beta D_{\rm grav}$ while $[H_{\rm matter}, H_{\rm matter}] = D_{\rm matter}$. Thus brackets with full constraint $H_{\rm total} = H_{\rm grav} + H_{\rm matter}$ doesn't seem to close into $D_{\rm total}$.
- \rightarrow Is this unique to our treatment? How big is the problem?

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

16/23

Page 21/29

Pirsa: 16110049

(Partial) No-Go Theorems!

[M. Bojowald, S.B. & J. Reyes, 2015; M. Bojowald & S.B., 2015]

- → Theories with local degrees of freedom such as spherical symmetry with matter OR Gowdy models → Implement holonomy corrections
 → Difficult to attain closure of the algebra.
 - Very general form of modification functions assumed.
 - Poisson structure after polymerization assumed to be of the form $\{f(K_{\phi})(x), E^{\phi}(y)\} = G\dot{f}\delta(x, y).$
- \rightarrow For instance, in the spherical symmetry case, $[H_{\rm grav}, H_{\rm grav}] = \beta D_{\rm grav}$ while $[H_{\rm matter}, H_{\rm matter}] = D_{\rm matter}$. Thus brackets with full constraint $H_{\rm total} = H_{\rm grav} + H_{\rm matter}$ doesn't seem to close into $D_{\rm total}$.
- \rightarrow Is this unique to our treatment? How big is the problem?

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

16/23

Page 22/29

Pirsa: 16110049

Comparison with other work

- → Alternative approach to loop quantization of spherically symmetric model [R. Gambini, J. Pullin, J. Olmedo & M. Campliglia, 2013 2016].
 - Abelianize the difficult part of the constraint algebra by linear redefinition of constraints (with phase-space dependent coefficients).
 - This new system of constraints is loop quantized through exactly same polymerization.
 - Require covariant quantizations (closed commutators AND classical limit).
 - Remarkably, exact same restrictions imposed on the modification functions as in the algebra closure procedure, for vacuum model.
 - For spherical symmetry with matter, possible to 'Abelianize' the classical constraints but obstructions for the holonomy-corrected constraints \Rightarrow Equivalent to the No-Go theorem.
- → Similar conclusions when compared to loop quantization of the CGHS black hole model [A. Corichi, J. Olmedo & S. Rastgoo, 2016; M. Bojowald & S.B., 2016].

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

Perturbative higher derivative corrections

 \rightarrow Can fluctuations and higher moments of the quantum state, generic to any QG theory, undo the deformations seen in effective constraint analysis of LQG?

NO! [M. Bojowald & S.B., 2014]

- Quantum back-reaction by moments of a state on expectation values does not lead to deformations of structure functions of the classical algebra, even though the constraints themselves receive perturbative quantum corrections (via moments).
- These conclusions from effective constraints are applicable even in deep quantum regimes, even where the semi-classical approximation breaks down.
- In an effective framework, moment terms ⇒ higher derivative corrections. Undeformed algebra for Effective Constraints including moments ⇒ higher curvature effective actions, constructed from curvature invariants, can be derived from such algebra. [Deruelle, Sasaki, Sendouda, & Yamauchi, 2009]

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

18/23

Pirsa: 16110049 Page 24/29

Possible way(s) out

- \rightarrow Change the polymerization scheme (additional: $E^{\phi} \rightarrow \cos(\rho K_{\phi})^{-1} E^{\phi}$) such that the Poisson bracket remains the same after polymerization.[M. Campiglia, R. Gambini, J. Olmedo & J. Pullin, 2016]
- → Background treatment (e.g. FLRW or Schwarzschild spacetimes):
 - Loop quantize the background ⇒ Cosmological perturbations on the 'quantum'-corrected spacetime with *dressed* metric, OR Spherically symmetric matter on a 'quantized' lattice.
 - Non-matching version of covariance for gravity and matter ⇒ Difficult to check covariance of the full system with gauge fixings.
 - In the cosmological case, quantum correction functions introduced only in the background Hamiltonian and not in the perturbation Hamiltonian ⇒ Issues of consistency?
- → Go back to self dual Ashtekar variables?

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

19/23

Pirsa: 16110049 Page 25/29

Possible way(s) out

- \rightarrow Change the polymerization scheme (additional: $E^{\phi} \rightarrow \cos(\rho K_{\phi})^{-1} E^{\phi}$) such that the Poisson bracket remains the same after polymerization.[M. Campiglia, R. Gambini, J. Olmedo & J. Pullin, 2016]
- → Background treatment (e.g. FLRW or Schwarzschild spacetimes):
 - Loop quantize the background ⇒ Cosmological perturbations on the 'quantum'-corrected spacetime with *dressed* metric, OR Spherically symmetric matter on a 'quantized' lattice.
 - Non-matching version of covariance for gravity and matter ⇒ Difficult to check covariance of the full system with gauge fixings.
 - In the cosmological case, quantum correction functions introduced only in the background Hamiltonian and not in the perturbation Hamiltonian ⇒ Issues of consistency?
- → Go back to self dual Ashtekar variables?

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

19/23

Pirsa: 16110049 Page 26/29

Self-dual Ashtekar variables for LQC perturbations

[J. Ben Achour, S.B., J. Grain & A. Marcianò, 2016]

- Scalar cosmological perturbations ⇒ Gravity plus a minimally coupled scalar around a flat, FLRW background.
- Consider holonomy correction functions for the background connection variable (same as for real LQC) $(c \to f(c))$.
- Modifications in not only the background part but also the perturbations part

$$H_{
m tot}[N] = rac{1}{2\kappa} \int {
m d}^3 x \left(ar{N} \left[\mathcal{H}^{(0)}(f) + \mathcal{H}^{(2)}(h_1, h_2, h_3, h_4)
ight] + \delta N \mathcal{H}^{(1)}(g_1, g_2)
ight).$$

- Closure of algebra gives nontrivial consistency conditions on the various modification functions ⇒ Correct classical limit.
- \rightarrow The structure functions remain unchanged \Rightarrow Constraint algebra remains undeformed.
- \rightarrow (Spatial) diffeomorphism constraint necessarily picks up quantum correction \Rightarrow Indications of Quantum spacetime?

200

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

Summary

- \rightarrow What have we learnt?
 - Requiring covariance is a restrictive consistency condition for constraining (canonical) quantum theories of gravity.
 - For interesting effects arising from LQG, can give rise to truly quantum spacetime with no classical structures available anymore.
 - However, closure of quantum algebra difficult to obtain in some models of LQG.
 - Use self-dual variables in midisuperspace models where the no-go theorem was valid and loop quantize models with local degrees of freedom.

(4 D) 4 D) 4 E) 4 E) 9 (

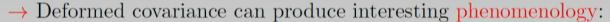
Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

22/23

Pirsa: 16110049 Page 28/29

Looking ahead



- Flat limit of deformed covariance models lead to κ -Minkowski noncommutative spacetime [G. Amelino-Camelia, M. Da Silva, M. Roncho, L. Cesarini & O. Lecian, 2016].
 - Study the modified dispersion relation for such deformations [G.

Amelino-Camelia, S.B., A. Marcianò & M. Roncho, 2016].

- Study algebra of constraints for noncommutative and nonassociative geometries as well as fractal spacetimes. Suitable coarse graining strategies lead to classical Riemannian geometries.[M. Bojowald, S.B. & U. Büyükcam, in preparation]
- → Loop quantization of (symmetry-reduced) models with self-dual Ashtekar variables:
 - Understand the gauge transformations generated by modified (spatial) diffeomorphism constraint ⇒ Consequences for Kukař, Teitelbohm, Hoffman uniqueness theorem.
 - Derive a polymerization function for SL(2, C) variables for holonomy corrections. Analytic continuation in some models indicate possibility to do so and still get bounded functions. [J. Ben Achour, K. Noui & A. Perez, 2016; J. Ben Achour, J. Grain & K. Noui, 2014].

10 × 10 × 12 × 12 × 2 9

Suddhasattwa Brahma

Non-Riemannian spacetimes in LQG

23/23

Pirsa: 16110049 Page 29/29