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Abstract: <p><strong>| describe how, within the group field theory (GFT) formalism for quantum gravity, we can: </strong></p>
<p></p>

<p><strong>1) provide a candidate description of the quantum building blocks of spacetime, bringing together ideas and mathematical structures
from other quantum gravity formalisms;</strong></p>

<p> </p>

<p><strong>2) apply powerful tools from quantum field theory, like the (perturbative and non-perturbative) renormalization group, to establish the
guantum consistency of given GFT models and to study their continuum limit and phase structure;</strong></p>

<p></p>
<p><strong>3) extract, from the full theory, an effective cosmological dynamics for the universe described as a quantum condensate of GFT

building blocks; in the simplest approximation, this dynamics reduces to the Friedmann equations at large scales but replaces the classical big bang
singularity with a quantum bounce.</strong></p>
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Plan of the talk

e disappearance and emergence of Space and Time in Quantum Gravity

. GFTs : what are they?
. general formalism
. relation with other QG approaches
. continuum limit in GFT and GFT renormalization
° effective continuum physics
. cosmology as Quantum Gravity hydrodynamics
. GFT condensate cosmology
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Intro:
disappearance and emergence of
Space and Time in Quantum Gravity




Hints for the Disappearance of Space and Time

w o . . minimal length scenarios
. challenges to “localization” in semi-classical GR 9
non-commutative spacetimes

need just quantum corrections to classical GR?

. spacetime singularities in GR
breakdown of continuum itself?
solution of information loss paradox require non-locality?
. black hole thermodynamics
if spacetime itself has entropy, it has microstructure
if entropy is finite, this implies discreteness
. Einstein's equations as equation of state (Jacobson et al)

GR dynamics is effective equation of state for any microscopic dofs
collectively described by a spacetime, a metric and some matter fields

. insights from analog gravity models in condensed matter physics

effective curved metric and matter fields from non-geometric atomic theory
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Hints for the Disappearance of Space and Time

w o . . minimal length scenarios
. challenges to “localization” in semi-classical GR 9
non-commutative spacetimes

need just quantum corrections to classical GR?

. spacetime singularities in GR
breakdown of continuum itself?
solution of information loss paradox require non-locality?
. black hole thermodynamics
if spacetime itself has entropy, it has microstructure
if entropy is finite, this implies discreteness
. Einstein's equations as equation of state (Jacobson et al)

GR dynamics is effective equation of state for any microscopic dofs
collectively described by a spacetime, a metric and some matter fields

. insights from analog gravity models in condensed matter physics

effective curved metric and matter fields from non-geometric atomic theory

Space and Time disappear in QG —_— Space and Time emerge from
(discrete?) non-spatiotemporal entities
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Beyond the spacetime continuum??

already imagining and constructing a consistent pre-geometric, pre-continuum picture of
spacetime, is highly non-trivial

Finstemn (1936): “the introduction of a space-time continuum may be considered as contrary lo nature in view
of the molecular structure of everything which happens on a small scale. |...| perhaps the success of the
Heisenberg method points to a purely algebraic method of description of nature, that is to the elimination of
continuous_functions from physics. Then, however, we must also give up, by principle, the space-time continuum.
11 is not unimaginable that human ingenwily will some day find methods which will make 1t possible lo proceed
along such a path. Al the present time, however, such a program looks like an atlempt to breathe in emply space.”
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Spacetime emergence:
phase transition + coarse graining?

if spacetime is made of discrete, pre-geometric building blocks, why does it look geometric and continuous?
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Spacetime emergence:
phase transition + coarse graining?

if spacetime is made of discrete, pre-geometric building blocks, why does it look geometric and continuous?

guiding hypotheses

space, time and geometry are the result of the collective behaviour of the microscopic building blocks (“QG atoms™)

the universe and its smooth, macroscopic geometry are the result of a phase transition (geometrogenesis) of QG
system, from a non-geometric, non-spatio-temporal phase, to a geometric one

the emergent, continuum dynamics of geometry (and GR) should be looked for in the coarse grained description of
the fundamental dynamics, in “geometric phase”

in particular, cosmology is QG hydrodynamics
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Spacetime emergence:
phase transition + coarse graining?

if spacetime is made of discrete, pre-geometric building blocks, why does it look geometric and continuous?

guiding hypotheses

space, time and geometry are the result of the collective behaviour of the microscopic building blocks (“QG atoms™)

the universe and its smooth, macroscopic geometry are the result of a phase transition (geometrogenesis) of QG
system, from a non-geometric, non-spatio-temporal phase, to a geometric one

the emergent, continuum dynamics of geometry (and GR) should be looked for in the coarse grained description of
the fundamental dynamics, in “geometric phase”

in particular, cosmology is QG hydrodynamics

analogy: spacetime is like a condensed matter system, arising from a dynamical “condensation” of QG
building blocks (~ “atoms of space”)
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Emergence for space and time in QG

There is no Space and no Time in Quantum Gravity, both have to emerge in some approximation

The world is fundamentally Quantum and its building blocks do not have spatiotemporal features

Continuum, spatiotemporal physics to be looked for in collective behaviour of fundamental building blocks

Cosmology is sector of such collective physics, hydrodynamics of microscopic building blocks
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Question n.1:
what are the QG building blocks of
space(time)?

Pirsa: 16110048  Page 20/154



Part 1:
the GFT formalism
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Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

(OFT -of- spacetime, not -on- spacetime )
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Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

(QFT -of- spacetime, not -on- spacetime ) a QFT for the building blocks of (quantum) space

Quantum field theories over group manifold G (or corresponding Lie algebra) ¢ : G'x'l — C

relevant classical phase space for “GFT quanta”: (‘T* (:) xd (G % G‘) xd

can reduce to subspaces in specific models depending on conditions on the field
d is dimension of “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

example: d=4 (91,92, 93, 91) < (B, Ba, B3, By) — C
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Group field theories

(Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, Baratin, ...... )

(QFT -of- spacetime, not -on- spacetime ) a QFT for the building blocks of (quantum) space

Quantum field theories over group manifold G (or corresponding Lie algebra) ¢ : G'x'l — C

relevant classical phase space for “GFT quanta” (‘T* G) xd (G % G‘) xd

can reduce to subspaces in specific models depending on conditions on the field
d is dimension of “spacetime-to-be”; for gravity models, G = local gauge group of gravity (e.g. Lorentz group)

example: d=4 W(f}lw.‘lza."ﬂi-.‘f‘l) — W(/fls By, B3, “-I) —C

very general framework; interest rests on specific models/use
(most interesting QG models are for Lorentz group in 4d)
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Group field theories

(QFT of spacetime, not defined on Spacclimo) a QFT for the building blocks of (quantum) space

. - o0 o ) ooqs(2) Ly (V) e .
]:(H-;.r) —_ EB\- 0 Sym { (Hr! Q@ Hy @ @ Hy )} boson statistics is -assumption-
(can construct, e.g., fermionic models)

H, = [4'2 ((.:d;dﬂ-lhnuu')

2@, ¢'@)] = 16@.7) [, ¢@)] = [o'@), &'@)] =0

additional conditions (e.g. symmetries) can be imposed on fields ——— restrictions on Hilbert space
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Group field theories

(QFT of spacetime, not defined on Spacotime) a QFT for the building blocks of (quantum) space

, o 00 o ) ooqs(2) L ay(V) e ,
\F(HH) = EB\- g SYym { (Hr! QRHy @ @ Ho )} boson statistics is -assumption-
(can construct, e.g., fermionic models)

IH.H - [4'2 ((.;d;rl!'r-llu.m')

[@(ﬁ') , @' (.ff")} le:(d, )

o), o)) = [¢'@), ¢')] =0

additional conditions (e.g. symmetries) can be imposed on fields ——— restrictions on Hilbert space

in GFT models, this is fundamental Hilbert space of dofs of universe

spacetime, geometry and matter fields should emerge from these quantum data
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Group field theories

a QFT for the building blocks of (quantum) space

Fock vacuum: “no-space” (“emptiest”) state |0 > (d=4)

single field “quantur.n"f spin network vertfx or tetrahedron (g1, 92, 3, 1) > p(By, By, By, By) — C
(“building block of space”)
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Group field theories

a QFT for the building blocks of (quantum) space

Fock vacuum: “no-space” (“emptiest”) state |0 > (d=4)

single field “quantur.n"f spin network vertfx or tetrahedron (g1, 92,3, 1) «— p(By, By, By, By) — C
(“building block of space”)

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones)

e XS
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Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

A

S(p, @) = 5 /[d.r;-,.]w(m)Kf(.fh)@(m) + o1 [ 1d9ial@(gin)--0(9ip )V (gia, Gin) ~ + c.c.
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Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

|

1 —_— . " /\ .
S5(p, @) =5 /[d.r;-,.]w(m)Kd(.fh)@(m) + o1 [ 1d9ial@(gin)--0(9ip )V (gia, Gin) -~ + c.c.

“combinatorial non-locality” /
in pairing of field arguments

]
.
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Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

|

1 —_— . " /\ .
S5(p, @) =5 /[d.r;-,.]w(m)Kd(.fh)@(m) + o1 [ 1d9ial@(gin)--0(9ip )V (gia, Gin) -~ + c.c.

“combinatorial non-locality” /
in pairing of field arguments

]
.

specific combinatorics depends on model

simplest example (case d=4): simplicial setting
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Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 —_— . " /\ .
S5(p, @) =5 /[d.r;-,.]w(m)Kd(.fh)@(m) + o1 [ 1d9ial@(gin)--0(9ip )V (gia, Gin) -~ + c.c.

“combinatorial non-locality” /
in pairing of field arguments
specific combinatorics depends on model

simplest example (case d=4): simplicial setting

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common
triangles, to form 4-simplex (“building block of spacetime”)
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Group field theories

a QFT for the building blocks of (quantum) space

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

L I/ ) A
5(p, %) = 5 /[d.ri-f.]w(m)Kd(.fh:)@(m) + o1 [ 1d9ial@(gin)--0(9ip )V (gia, Gin) ~ +  c.c.
“combinatorial non-locality” /
in pairing of field arguments
specific combinatorics depends on model
simplest example (case d=4): simplicial setting ,—‘

)\
>

= 5
7
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

. e B AN
z = / DD e NEP = 3y

e
-+
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

. R B )\NI‘
Z = | DeDg ' M) = Z——QW T Ar

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

. R B )\NI‘
Z = | DeDg ' M) = Z——QW T Ar

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)

(generalisation of matrix models for 2d gravity/string worldsheet)
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

. R B )\NI‘
Z = | DeDg ' M) = Z——QW T Ar

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

. Y B )\NI‘
Z= [DeDper™0? = ) o Ar

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)

(generalisation of matrix models for 2d gravity/string worldsheet)

Feynman amplitudes (model-dependent):

equivalently:

. spin foam models (in group irreps)
Reisenberger,Rovelli, '00
. lattice gauge theories

(with group/Lie algebra variables)
A. Baratin, DO, 11
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Group field theories

a QFT for the building blocks of (quantum) space

Feynman perturbative expansion around trivial vacuum

. Y B )\NI‘
Z= [DeDper™0? = ) s Ar

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =

= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)

(generalisation of matrix models for 2d gravity/string worldsheet)

Feynman amplitudes (model-dependent):

equivalently:

. spin foam models (in group irreps)
Reisenberger,Rovelli, '00
. lattice gauge theories

(with group/Lie algebra variables)
A. Baratin, DO, 11
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Question n.2:
what have GFTs to do with geometry
and gravity”?
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, .....)

same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, .....

same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data

dropping group/algebra data

example: d=3 (or restricting to finite group)
Tiji: Zx> — C
', ) ) . 1% 3 ~ h )
#g1,92,93) : G770 = © ¥ T X®oC X=12..,
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan

same combinatorics (of states/observables and histories/Feynman diagrams), no group-theoretic data

dropping group/algebra data
example: d=3 (or restricting to finite group)

, rl;j_)'f\'- : %K/.”; - (C
291,92, 93) : G*3 5 C

> Tije: X*% = C X=12..,N
| A
'S'("P) = 5 § r[‘!]f\rii\ji - — § ’["ijf\'rl‘.“'f'm"Pm.jnflfu.ii
) f . T p .
“ '-J‘-ll" 1!\/7\' J

ifklmn

Feynman diagrams are stranded graphs dual to 3d simplicial complexes
(nodes dual to tetrahedra, lines dual to triangles, faces dual to edges, 3-cells dual to vertices)

-
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, .....)

Quantum dynamics (purely combinatorial - sum over random triangulations):
. Vi Vi |
7 = 'D’[‘(’,_H('i',r\) — E /\7Zl1 — E )\7 NM‘_ ':_}VI‘
' T sym(I") = sym(I")

can be recast in terms of Regge action for gravity discretised on equilateral triangulation
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, .....)

Quantum dynamics (purely combinatorial - sum over random triangulations):
. Vi Vi |
7 = 'D’[‘(’,_H('i',r\) — E /\7Zl1 — E )\7 NM‘_ ':_}VI‘
' T sym(I") = sym(I")

can be recast in terms of Regge action for gravity discretised on equilateral triangulation

Random tensors — —> random geometries
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, .....)

Quantum dynamics (purely combinatorial - sum over random triangulations):

= sy ' = H;:/'m,(y

sym(I")
can be recast in terms of Regge action for gravity discretised on equilateral triangulation

Random tensors — —> random geometries

most (combinatorial) results of tensor models also apply to GFTs

. use of colors (colored tensors) to encode topology
. large-N expansion

. double scaling

. universality of random tensors
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GFTs and tensor models

(Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, .....)

Quantum dynamics (purely combinatorial - sum over random triangulations):

= sy ' = H’!j'”),(y

sym(I")
can be recast in terms of Regge action for gravity discretised on equilateral triangulation

Random tensors — —> random geometries

most (combinatorial) results of tensor models also apply to GFTs

. use of colors (colored tensors) to encode topology
GFTs = tensor models + group data : large-N expansion
1 . double scaling
. universality of random tensors

richer models, richer dynamics
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GFTs, spin foam models and simplicial geometry

model building guided by simplicial geometry:

GFT quanta are discrete geometric structures with group-theoretic variables
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GFTs, spin foam models and simplicial geometry

model building guided by simplicial geometry:

GFT quanta are discrete geometric structures with group-theoretic variables

example: 4d quantum gravity ©(g1, 92,93, 94) < @(By, By, By, By) — C
d = 4; G = local gauge group of gravity = SO(3,1) (in riemannian signature, SO(4))
phase space before (T*Spin()]** ~ [T*SU2) x T*SU2)]™" 4
geometricity constraints: N

classical tetrahedron in 4d:

[ Ainl =breR' b N =0 » b =0 ] b; ~
i

\ unigue intrinsic geometry (up to rotations)

/ B! ~ N b/

Elff’"( AR ~s0(4), NTeRY) Ny («B/7)y =0 > Bl ﬂ
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GFT quanta are discrete geometric structures with group-theoretic variables
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d = 4; G = local gauge group of gravity = SO(3,1) (in riemannian signature, SO(4))
phase space before (T*Spin()]** ~ [T*SU2) x T*SU2)]™" 4
geometricity constraints: N
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i
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/ B! ~ N b/

Elff’"( AR ~s0(4), NTeRY) Ny («B/7)y =0 > Bl ﬂ
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GFTs, spin foam models and simplicial geometry

F(Hy) = By sym { ('H-E.I) oHY®...® ’HS.\'))}
H, = L* (('r'”': dittraar)

d=4; G=_S80(3,1) (in riemannian signature, SO(4))

restrictions on Hilbert space
additional geometricity conditions _— p

(can be imposed at dynamical level)
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GFTs, spin foam models and simplicial geometry

F(Hy) = By sym { ('H-E.I) oHY®...® ’HS.\'))}
H, = L* (('r'”': dittraar)

d=4; G=_S80(3,1) (in riemannian signature, SO(4))

restrictions on Hilbert space
additional geometricity conditions _— p

(can be imposed at dynamical level)
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GFTs, spin foam models and simplicial geometry

F(Hy) = By sym { ('H-E.I) SHY®. . ® ’HE‘\'))}
H, = L* ((}"": dittraar)

d=4; G=_S80(3,1) (in riemannian signature, SO(4))

restrictions on Hilbert space
additional geometricity conditions _— P

(can be imposed at dynamical level)

/

GFT quanta are discrete geometric simplices

this is candidate fundamental Hilbert space of dofs of universe

spacetime, geometry and matter fields should emerge from these quantum data
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GFTs, spin foam models and simplicial geometry

F(Hy) = By sym { ('H-E.I) SHY®. . ® ’HE‘\'))}
H, = L* ((}"": dittraar)

d=4; G=_S80(3,1) (in riemannian signature, SO(4))

restrictions on Hilbert space
additional geometricity conditions _— P

(can be imposed at dynamical level)

/

GFT quanta are discrete geometric simplices

this is candidate fundamental Hilbert space of dofs of universe

spacetime, geometry and matter fields should emerge from these quantum data
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GFTs, spin foam models and simplicial geometry

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 — . " /\ .
S(p, @) = 5 /[d.r;-,.]w(m)Kd(.fh:)@(m) + o1 [ 1d9ial@(gin)--0(9ip)V(gia, Gin) -~ + c.c.

“combinatorial non-locality” /
in pairing of field arguments

+ appropriate “geometricity conditions”
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classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 — . " /\ .
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“combinatorial non-locality” /
in pairing of field arguments

+ appropriate “geometricity conditions”
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GFTs, spin foam models and simplicial geometry

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

1 — . " /\ .
S(p, @) = 5 /[d.r;-,.]w(m)Kd(.fh:)@(m) + o1 [ 1d9ial@(gin)--0(9ip)V(gia, Gin) -~ + c.c.

“combinatorial non-locality” /
in pairing of field arguments

+ appropriate “geometricity conditions”
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GFTs, spin foam models and simplicial geometry

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

L 1/ . A/
b(%sﬁ)—.—/[d.ri-f.]w(m)Kd(.r;,:)w(m)+ﬁ [dgiale(gi1)....0(Gin)V(Gia, Gip) + c.c.

“combinatorial non-locality” /
in pairing of field arguments

specific combinatorics depends on model + &ppropriate “geometricity conditions”

simplest example (case d=4): simplicial setting ,—‘
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GFTs, spin foam models and simplicial geometry

Feynman perturbative expansion around trivial vacuum

. o B AN
z = / DDy 0P = YL A

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):

equivalently:
+ spin foam model (sum-over-histories of spin
networks ~ covariant LQG)
Reisenberger,Rovelli, '00
. lattice gravity path integral
(with group+Lie algebra variables)
A. Baratin, DO, ‘11
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GFTs, spin foam models and simplicial geometry

Feynman perturbative expansion around trivial vacuum

. o B AN
z = / DDy 0P = YL A

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):

equivalently:
+ spin foam model (sum-over-histories of spin
networks ~ covariant LQG)
Reisenberger,Rovelli, '00
. lattice gravity path integral
(with group+Lie algebra variables)
A. Baratin, DO, ‘11
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GFTs, spin foam models and simplicial geometry

Feynman perturbative expansion around trivial vacuum

. e B )\NI‘

e
-+

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
= stranded diagrams dual to cellufar complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):

equivalently:
+ spin foam model (sum-over-histories of spin
networks ~ covariant LQG)
Reisenberger,Rovelli, '00
. lattice gravity path integral
(with group+Lie algebra variables)

A. Baratin, DO, ‘11 GFT as lattice quantum gravity:

@ynamical triangulation9+@uantum Regge calculu%
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GFTs, spin foam models and simplicial geometry

Feynman perturbative expansion around trivial vacuum

. e B )\NI‘
Z= [DeDper™0? = ) s Ar

e
-+

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
= stranded diagrams dual to cellufar complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices)

Feynman amplitudes (model-dependent):

equivalently:
+ spin foam model (sum-over-histories of spin
networks ~ covariant LQG)
Reisenberger,Rovelli, '00

. lattice gravity path integral
(with group+Lie algebra variables)
A, Baratin, DO, ‘11 GFT as lattice quantum gravity:
discrete semiclassical limit —-> Regge calculus @ynamical triangulation9+@uantum Regge calculu%
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GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G
example: d=3 po: SO(3)?/S0(3) — R +sinplicial inerRGon
Vh € SO(3), wolhgr hgs hgy) = we(gr, g2, 83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)
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GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G
example: d=3 po: SO(3)?/S0(3) — R +sinplicial inerRGon
Vh € SO(3), wolhgr hgs hgy) = we(gr, g2, 83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)

o / Hdm H 0 (Hy () / Hdh; H ; (Hh f ”) 1L\Iattice gauge theory formulation of
’ ” 3d gravity/BF theory
/. L j.x / I/ Py, e xoH,
2 114 H{ it } H" ] H" .

{ie} ¢
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GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G
example: d=3 po: SO(3)?/S0(3) — R +sinplicial inerRGon
Vh € SO(3), wolhgr hgs hgy) = we(gr, g2, 83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)

Ar / 17[‘”” [T &) / H‘”” H 0 (H;[ o) ”) 1L\Iattice gauge theory formulation of
/ ) 3d gravity/BF theory
/. LB j.x / I/ Py, T H,
ZH( H{ Ji /< J6 } H" ) Hl( .

{ie} ¢

/

spin foam formulation of 3d gravity/BF theory
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GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G
example: d=3 po: SO(3)?/S0(3) — R +sinplicial inerRGon
Vh € SO(3), wolhgr hgs hgy) = we(gr, g2, 83) with only delta functions
valid for GFT definition of BF theory in any dimension

can be computed in different (equivalent) representations (group, spin, Lie algebra)

Ar / 17[‘”” [T &) / H‘”” H 0 (H;[ o) ”) 1L\Iattice gauge theory formulation of
/ ) 3d gravity/BF theory
/. LB j.x / I/ Py, T H,
ZH( H{ i } H" d Hl( N

Je /' ‘\

discrete 1st order path integral for 3d gravity/BF theory

spin foam formulation of 3d gravity/BF theory on simplicial complex dual to GFT Feynman diagram
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GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity

. . . . DO, 1310.7786 [gr-qc]
but dynamics not derived from canonical quantization of GR

DO, J. Ryan, J. Thurigen, ‘14

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)
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GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity

. . . . DO, 1310.7786 [gr-qc]
but dynamics not derived from canonical quantization of GR

DO, J. Ryan, J. Thurigen, ‘14

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

[N
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GFTs and Loop Quantum Gravity

second quantized version of Loop Quantum Gravity

. . ) o DO, 1310.7786 [gr-qc]
but dynamics not derived from canonical quantization of GR

DO, J. Ryan, J. Thurigen, ‘14

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

[N

GFT Hilbert space = Fock space of open spin network vertices - contains any LQG state (all spin networks)
any LQG observable has a 2nd quantised, GFT counterpart

choice of LQG dynamics (Hamiltonian constraint operator) translates into choice of GFT action
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Group Field Theory: crossroad of approaches

SlmpI|C|aI gravity path integrals [Matrix mOde|S]
Loop QG (e g. quantum Regge calculus

L\
.H i

l

[ Non-commutative geometry ] { (caugal) Dyngmmal ]

Spin foam models

Triangulations
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Questions n.3:
are these models consistent?
how do you define a continuum limit?




Part 2:
the continuum limit of GFTs

GFT renormalization




Part 2:
the continuum limit of GFTs

GFT renormalization




The problem of the continuum Iimit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

\ new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of
non-spatio-temporal d.o.f.s
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The problem of the continuum Iimit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

T new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of
non-spatio-temporal d.o.f.s

continuum approximation very different (conceptually, technically)  few QG d.o.f.s full Quantum Gravity

from classical approximation (.9 simple LQG spinnets) ®
N-direction
(collective behaviour of many interacting degrees of freedom):
continuum approximation "
h-direction: classical approximation
N
L o
few QG d.o.f.s in classical approx. General Relativity
(e.g. discrete/lattice gravity) (continuum spacetime)
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The problem of the continuum Iimit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

T new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of
non-spatio-temporal d.o.f.s

continuum approximation very different (conceptually, technically)  few QG d.o.f.s full Quantum Gravity

from classical approximation (.9 simple LQG spinnets) ®
N-direction
(collective behaviour of many interacting degrees of freedom):
continuum approximation "
h-direction: classical approximation
N
L o
“well-understood” in Spin foam models and few QG d.o.f.s in classical approx. General Relativity
(e.g. discrete/lattice gravity) (continuum spacetime)

discrete gravity
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Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s

for our QG models, do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,

separated by phase transitions

for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?

need to understand effective dynamics at different “GFT scales”:

RG flow of effective actions & phase structure & phase transitions skl 07 D007

Page 80/154



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool

for taking into account the physics of more and more d.o.f.s

. for our QG models, do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions

. for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?

. need to understand effective dynamics at different “GFT scales”:

RG flow of effective actions & phase structure & phase transitions skl 07 D007

many results in related formalisms:

* renormalization in SF models (~ lattice gauge theories)
Dittrich, Bahr, Steinhaus, Martin-Benito, ......

+ different (kinematical) phases in LQG  sqpekar-Lewandowski, Koslowski-Sahimann, Dittrich-Geiller)

+ phase diagrams (numerically) in (causal) dynamical triangulations Amblorn, Loll, Jurkiewicz, .....
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GFT renormalisation - general scheme

. e B /\NI
— /DL,ODW PPN I — E Ar
, = sym(l
" ] ' b
S(e,P) = 5 /|fi!h|+“(!h) (91)¢(gi) ”, /”"hrﬁHv-ﬂ(.‘hl)--“'*P(‘/.'H)l/(ffunfhl?} Fooce

general strategy:

treat GFTs as ordinary QFTs defined on Lie group manifold

use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration
subtleties of quantum gravity context at the level of interpretation

scales:
defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations
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GFT renormalisation - general scheme

. o B /\Nr
Z = / DeDG ! Srlw?) Ar
. it ZI: sym(I")
1/ , A
S(p, @) = 5 /IrirhIv“(.rh)f\'(m)up(m) T /”"hrﬁH—ﬂ(.‘hl)--“H:(‘I.'!J)V(H’mafhl?} Fooce

general strategy:
treat GFTs as ordinary QFTs defined on Lie group manifold
use group structures (Killing form, topology, etc) to define notion of scale and to set up mode integration

subtleties of quantum gravity context at the level of interpretation

scales:
defined by propagator: e.g. spectrum of Laplacian on G = indexed by group representations

* need to have control over “theory space” (e.g. via symmetries) A. Kegeles, DO, '15,'16

= main difficulty:
controlling the combinatorics of GFT Feynman diagrams and interactions to control RG flow and divergences

need to adapt/redefine many QFT notions: connectedness, subgraph contraction, Wick ordering, .....

Pirsa: 16110048 Page 83/154



GFT perturbative renormalisation
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GFT perturbative renormalisation

h|
i ‘ -'ﬁ’FI
w2 ( i
- scale indexed by group representations s ' 9

step by step, towards renormalizable 4d gravity models:

- interplay between algebraic data and combinatorics of diagrams

+ calculation of some radiative corrections T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P, Vitale, '10; A. Riello, '13; Bonzom, Dittrich, ‘15

. : . . ST Ben Geloun, Bonzom, '11; Ben Geloun, ‘13
+ finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term) =~ oo Foneem. T Ben meloun

« renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

Ben Geloun, Rivasseau, '11 o o N 2 AN 4 ‘\ 4 L « 1 4
Carrozza, DO, Rivasseau, '12, '13 S(QD, (p) = E tp Ib(tp, gp) d{f -".‘i I{“ \a a 3% h} l / ‘ o '
-> with gauge invariance be B \A TN/ N N A
) - . ¥ 1S - M g a4 II
—> non-abelian ( SU(2) ) ' 8 4

——> S0(4) or SO(3,1) with simplicity constraints: first results on BC-like 4d models

. . Lahoche, DO, '15; Carrozza, Lahoche, DO, '16
— ——> generic (and robust?) asymptotic freedom  gen Geloun, 12: Carrozza, ‘14
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GFT perturbative renormalisation

Iy
i i/
step by step, towards renormalizable 4d gravity models: ] [ ‘: "5'
- scale indexed by group representations s / 9

- interplay between algebraic data and combinatorics of diagrams

+ calculation of some radiative corrections T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P, Vitale, '10; A. Riello, '13; Bonzom, Dittrich, ‘15

. : . . ST Ben Geloun, Bonzom, '11; Ben Geloun, ‘13
+ finiteness results in 3d simplicial models (Boulatov with Laplacian kinetic term) =~ oo Foneem. T Ben meloun

« renormalizable TGFT models (3d, 4d, and higher) - Laplacian + tensorial interactions

Ben Geloun, Rivasseau, '11 . . Nl 2N 4 N NN
Carrozza, DO, Rivasseau, 12, '13 5(90, 1,49) = E Ly Ib(QP, 99) o & fa Ve P2 2y Ly
-> with gauge invariance beB \A TN/ N N A
X s < * ' A
—> non-abelian ( SU(2) ) ' 8 4

——> S0(4) or SO(3,1) with simplicity constraints: first results on BC-like 4d models

. . Lahoche, DO, "15; Carrozza, Lahoche, DO, ‘16
———> generic (and robust?) asymptotic freedom  gen Geloun, "12; Carrozza, ‘14

many important lessons main open issues:

(e.g. learnt to deal with + characterise better theory space (kinetic term, combinatorics of interactions, ...)
combinatorics and topology of + deal with non-group structures (due to Immirzi parameter)

spin foam complex) understand in full the geometric interpretation of UV/IR and of RG flow
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GFT non-perturbative renormalisation

9 s B /\NI‘
the GFT proposal: zZ = / DeDp e’ Sale®) = Z W Ap
. = sym

controlling the continuum limit ~ evaluating GFT path integral (in some non-perturbative approximation)

Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Ousmane-Samary, Duarte, ....

Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, .....
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GFT non-perturbative renormalisation

9 s B /\NI'
the GFT proposal: zZ = / DeDp e’ Sale®) = Z m Ap
. = sym

controlling the continuum limit ~ evaluating GFT path integral (in some non-perturbative approximation)

two directions:

+ GFT non-perturbative renormalization and “IR” fixed points (e.g. FRG analysis - e.g. a la Wetterich
Benedetti, Ben Geloun, DO, Martini, Lahoche, Carrozza, Ousmane-Samary, Duarte, ....

* GFT constructive analysis Freidel, Louapre, Noui, Magnen, Smerlak, Gurau, Rivasseau, Tanasa, Dartois, Delpouve, .....

non-perturbative resummation of perturbative (SF) series

variety of techniques: + intermediate field method
+ loop-vertex expansion
+ Borel summability
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FRG analysis of GFT models N .
. Benedetti, J. Ben Geloun, DO, ‘14

regularised path integral: — Vil 1T ' Gl T Al B Tel( T BV Tr(T b
’ ° I 2k [, T) = V) = /d(/ul.(/) o~ S1b bl = AS ke [§, @)+ Te(J - §)+Tr (T -¢)

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

AHI»T [, p| = Tr(¢p- HAS <) Z op HA! (P; PJ) Opr
PP’

Ri(p.p') = 0(k* — Zop})Zi(k* — Zsp2)o(p — p')

effective action:  I' [, ] = hup{’]‘r(,f ) 4+ Te(J @) = Wi(J, J] - Ab’},-_[tp.?ﬁ]}
2

Wetterich equation: Ol = TI[(()t R - (I_iz) -+ Rk)il] t = log k

boundary conditions:  x—o[w, @] = v, @], Ce-ale. @) = S[e, @] @ = ()

computing the effective action solving the Wetterich equation amounts to solving the GFT path integral

need truncation of effective action up to some order of interactions

Pirsa: 16110048 Page 89/154



FRG analysis of GFT models N .
. Benedetti, J. Ben Geloun, DO, ‘14

regularised path integral: — Vil 1T ' Gl T Al B Tel( T BV Tr(T b
’ ° I 2k [, T) = V) = /d(/ul.(/) o~ S1b bl = AS ke [§, @)+ Te(J - §)+Tr (T -¢)

regulator cutting off IR modes (UV well-defined with appropriate choice of IR regulator)

AHI»T [, p| = Tr(¢p- HAS <) Z op HA! (P; PJ) Opr
PP’

Ri(p.p') = 0(k* — Zop})Zi(k* — Zsp2)o(p — p')

effective action:  I' [, ] = hup{’]‘r(,f ) 4+ Te(J @) = Wi(J, J] - Ab’},-_[tp.?ﬁ]}
2

Wetterich equation: Ol = TI[(()t R - (I_iz) -+ Rk)il] t = log k

boundary conditions:  x—o[w, @] = @, @], Ceeale. @) = S[e, @] @ = ()

computing the effective action solving the Wetterich equation amounts to solving the GFT path integral

need truncation of effective action up to some order of interactions
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GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models
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GFT non-perturbative renormalisation

recent results:

FRG for (tensorial) GFT models (similar to matrix model but distinctively field-theoretic)

Eichhorn, Koslowski, ‘14

* Polchinski formulation based on SD equations Krajewski, Toriumi, ‘14

« general set-up for Wetterich formulation based on effective action
+ analysis of TGFT on compact U(1)d Benedetti, Ben Geloun, DO, 14 ; Ben Geloun, Martini, DO, '15, '16,
Benedetti, Lahoche, '15; Duarte, DO, ‘16
« RG flow and phase diagram established

+ analysis of TGFT on non-compact R d

, .
+ RG flow and phase diagram established *' = - B ) =
+ analysis of TGFT on non-compact RAd with gauge invariance '*u; : :‘:
* RG flow and phase diagram established " L!I“ — — o -
+ analysis of TGFT on SU(2)"3  Carrozza, Lahoche, ‘16 = ., "-‘ X ‘1 ) * .~
\ i e -
generically (so far): T '/; =

two FPs (Gaussian-UV, Wilson-Fisher-IR)
asymptotic freedom

one symmetric phase 1ol 4
.00 ol 002 .03 0iM

one broken or condensate phase Ay
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Question n.4:
what effective continuum physics?
where Is gravitational dynamics”




Part [V:
effective cosmology from GFTs

Cosmology as QG hydrodynamics

4444444444



Quantum spacetime:
the difficult path fromm microstructure to cosmology

the issue:

identify relevant phase for effective continuum geometry
extract effective continuum dynamics and relate it to GR

Quantum Gravity problem:
identify microscopic d.o.f. of quantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for fundamental (quantum) cosmology:
explain features of early Universe, obtain testable QG predictions

various models: loop quantum cosmology, ....

also work by:

C. Rovelli, F. Vidotto (perturbative GFT (spin foam) context); E. Alesci, F. Cianfrani (canonical LQG context); .....
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What is cosmology, then”?
two views on quantum gravity:
1. quantum gravity = quantum theory of gravitational field ~ quantum General Relativity
2. quantum gravity = microscopic theory of pre-geometric quantum degrees of freedom

(“quantum (field) theory of atoms of space”)

= gravitational field result of collective dynamics
spacetime and geometry are emergent entities

in case 2.

cosmology is necessarily to be understood as result of coarse graining of microscopic dofs up to global
observables only, homogeneous sector of (quantum) GR

(quantum) cosmological degrees of freedom governed by statistical distribution
not quantum theory of homogeneous geometries

cosmological dynamics to be looked for in the hydrodynamic approximation of full quantum gravity
(most macroscopic, coarse grained, global description of the microscopic pre-geometric system)

Page 96/154



Pirsa: 16110048

What is cosmology, then”?
two views on quantum gravity:
1. quantum gravity = quantum theory of gravitational field ~ quantum General Relativity
2. quantum gravity = microscopic theory of pre-geometric quantum degrees of freedom

(“quantum (field) theory of atoms of space”)

= gravitational field result of collective dynamics
spacetime and geometry are emergent entities

in case 2.

cosmology is necessarily to be understood as result of coarse graining of microscopic dofs up to global
observables only, homogeneous sector of (quantum) GR

(quantum) cosmological degrees of freedom governed by statistical distribution
not quantum theory of homogeneous geometries

cosmological dynamics to be looked for in the hydrodynamic approximation of full quantum gravity
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Cosmology as hydrodynamics of (quantum) spacetime

re-thinking the “Cosmological Principle”:
“every point is equivalent to any other” ~ homogeneity of space

really means: a certain approximation is assumed valid:
universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes
~ universe is in state where effects on largest wavelengths of shorter wavelengths is negligible

~ can neglect wavelengths (much) shorter than scale factor

very similar in spirit to hydrodynamic approximation:
dynamics of microscopic degrees of freedom can be neglected + effects of small wavelengths can be neglected

degrees of freedom of local region can describe whole of system (in a coarse grained, statistical sense)

i.e. whole universe (dynamics) well-approximated by local patch (dynamics)
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Cosmology as hydrodynamics of (quantum) spacetime

re-thinking the “Cosmological Principle”:
“every point is equivalent to any other” ~ homogeneity of space

really means: a certain approximation is assumed valid:
universe is in state where inhomogeneities can be neglected, in relation to dynamics of homogeneous modes
~ universe is in state where effects on largest wavelengths of shorter wavelengths is negligible

~ can neglect wavelengths (much) shorter than scale factor

very similar in spirit to hydrodynamic approximation:
dynamics of microscopic degrees of freedom can be neglected + effects of small wavelengths can be neglected

degrees of freedom of local region can describe whole of system (in a coarse grained, statistical sense)

i.e. whole universe (dynamics) well-approximated by local patch (dynamics)

end result:

( basic variable is “fluid density” with arguments the geometric data of minisuperspace )

(cosmology is (non-linear) dynamics for such density and for geometric (global) observables computed from it)
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From Quantum Gravity to Cosmological hydrodynamics

key strategy:

coarse graining of QG configurations

\

coarse graining of QG (quantum) dynamics
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From Quantum Gravity to Cosmological hydrodynamics

key strategy:

coarse graining of QG configurations

\

coarse graining of QG (quantum) dynamics

very difficult in general
(see comparatively simpler problem of coarse graining classical GR)
(see also analogous problem in condensed matter theory)
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From Quantum Gravity to Cosmological hydrodynamics

key strategy:

coarse graining of QG configurations

\

coarse graining of QG (quantum) dynamics

very difficult in general
(see comparatively simpler problem of coarse graining classical GR)
(see also analogous problem in condensed matter theory)
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From Quantum Gravity to Cosmological hydrodynamics

key strategy:

coarse graining of QG configurations

\

coarse graining of QG (quantum) dynamics

very difficult in general
(see comparatively simpler problem of coarse graining classical GR)
(see also analogous problem in condensed matter theory)
one special case:

guantum condensates (BEC)

effective hydrodynamics directly read out of microscopic quantum dynamics (in simplest approximation)
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(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14, L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16;
M. De Cesare, M. Sakellariadou, '16; S. Gielen, '16; M. De Cesare, A. Pithis, M. Sakellariadou, ‘16
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(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14, L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16;
M. De Cesare, M. Sakellariadou, '16; S. Gielen, '16; M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation
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(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14, L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16;
M. De Cesare, M. Sakellariadou, '16; S. Gielen, '16; M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces
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(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16;

M. De Cesare, M. Sakellariadou, '16; S. Gielen, "16; M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

e.g. (simplest): lo) 1= exp () |0)

GFT field coherent state 0 : /ff'l.flﬁ(.fi.r)@l(flfj o(gik) = o(gr)

superposition of
{geometries of tetrahedron} ~

infinitely many SN dofs ) )
o (D) D ~
described by single collective wave function o~ {continuum spatial geometries at a point} ~
(depending on homogeneous anisotropic geometric data) . : .
=~ minisuperspace ol ]HJ]I](J;.’,’(‘H('U[IH ;_"{‘UIII(‘( I'1es
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(Quantum) Cosmology from GFT condensates

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
S. Gielen, '14; G. Calcagni, '14; L. Sindoni, '14; S. Gielen, DO, '14; S. Gielen, '14; S. Gielen, '15; DO, L. Sindoni, E. Wilson-Ewing, '16;

M. De Cesare, M. Sakellariadou, '16; S. Gielen, "16; M. De Cesare, A. Pithis, M. Sakellariadou, ‘16

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

Quantum GFT condensates are continuum homogeneous (quantum) spaces

e.g. (simplest): lo) 1= exp () |0)

GFT field coherent state 0 : /ff'l.flﬁ(.fi.r)@l(flfj o(gik) = o(gr)

superposition of
{geometries of tetrahedron} ~

infinitely many SN dofs ) )
o (D) D ~
described by single collective wave function o~ {continuum spatial geometries at a point} ~
(depending on homogeneous anisotropic geometric data) . : .
=~ minisuperspace ol ]HJ]I](J;.’,’(‘H('U[IH ;_"{‘UIII(‘( I'1es
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Homogeneous geometries & GFT condensates
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Homogeneous geometries & GFT condensates

. lift homogeneity criterion to quantum level (and include conjugate information):
[ all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state ]
] N
U (Bi(1y, ooy Bigny) Vi [T ®Bi(m))
m=1
. in GFT: such states can be expressed in 2nd quantized language and

one can consider superpositions of states of arbitrary N

. sending N to infinity means improving arbitrarily the accuracy of the sampling

# [ quantum GFT condensates are continuum homogeneous (quantum) spaces ]
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Effective cosmological dynamics from GFT

S. Gielen, DO, L. Sindoni,
PRL, arXiv:1303.3576 [gr-qc];
. JHEP, arXiv:1311.1238 [gr-qc]

L | A AL l ’,,--
‘G-> <= €Xp ((T) ‘()> g. / d g ’T(.W )‘fg| (.‘/f) (T(f/,r A) == (T(m) superposition of infinitely

many SN dofs

follow closely procedure used in real BECs

single-particle GFT condensate:
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Effective cosmological dynamics from GFT

S. Gielen, DO, L. Sindoni,
PRL, arXiv:1303.3576 [gr-qc];
JHEP, arXiv:1311.1238 [gr-qc]

‘G-> := €Xp ((}) ‘()> 0= / r[‘lﬁ rr(.q,)(ffj"-(y,) (T(f/,flﬁ) = U(f}]) superposition of infinitely
. many SN dofs

follow closely procedure used in real BECs

single-particle GFT condensate:

from truncation of SD equations for GFT model
applied to (coherent) GFT condensate state, 5]}

gives equation for “wave function”: .[(lrj’-]fe(r]: r}’-)(:r(q’-) + A | —
' g Jdvy Ay i (5%0(%) p=a

basically (up to some approximations), the “classical GFT eqns”

similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]
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Effective cosmological dynamics from GFT

S. Gielen, DO, L. Sindoni,
PRL, arXiv:1303.3576 [gr-qc];
JHEP, arXiv:1311.1238 [gr-qc]

‘G-> := €Xp ((}) ‘()> 0= / r[‘lﬁ rr(.q,)(ffj"-(y,) (T(f/,flﬁ) = U(f}]) superposition of infinitely
. many SN dofs

follow closely procedure used in real BECs

single-particle GFT condensate:

from truncation of SD equations for GFT model
applied to (coherent) GFT condensate state, 5]}

ives equation for “wave function™: "N / / _
g g /[(l_r;,-] K(gi,g9;)0(g;) + A ; lo=e =0
no perturbative (spin foam) expansion - . . : " : "
infinite superposition of SF amplitudes basically (up to some approximations), the “classical GFT eqns

similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]
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Effective cosmological dynamics from GFT

S. Gielen, DO, L. Sindoni,
PRL, arXiv:1303.3576 [gr-qc];
JHEP, arXiv:1311.1238 [gr-qc]

follow closely procedure used in real BECs

single-particle GFT condensate:

‘G-> := €Xp ((}) ‘()> 0= / r[‘lﬁ rr(.q,)(ffj"-(y,) (T(f/,flﬁ) = U(f}]) superposition of infinitely
. many SN dofs

from truncation of SD equations for GFT model
applied to (coherent) GFT condensate state, . ﬂ>
gives equation for “wave function™: / [fh/” }C(U't’* (/:')(T((f-:) + A< (( ) |'~P:ff =0
. o I ' (5%0 q; -

no perturbative (spin foam) expansion -

infinite superposition of SF amplitudes basically (up to some approximations), the “classical GFT eqns

similar equations to M. Bojowald et al., arXiv:1210.8138 [gr-qc]

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
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Cosmology from GFT condensates

summary of recent results:

+ general scheme, geometric interpretation and effective dynamics (GP and dipole condensates)
S. Gielen, DO, L. Sindoni, '13

* generalised condensate states (also for spherical black holes)
DO, D. Pranzetti, J. Ryan, L. Sindoni, '156; DO, D, Pranzetti, L. Sindoni, ‘15
+ lattice refinement and GFT cosmological observables ¢ gisien. 0. ‘14

+ relation with LQC S. Gielen, '14, '15, '16; G. Calcagni, ‘14

+ effective cosmological dynamics from EPRL model DO, L. Sindoni, E. Wilson-Ewing, '16;

\ . , . . \ M. De Cesare, M. Sakellariadou, '16; S. Gielen, ‘16
* isotropic reduction, scalar field coupling, relational observables

+ generalised Friedmann equations
+ generic big bounce resolution of classical singularity
* reduction to LQC dynamics
+ effect of GFT interaction in emergent cosmological dynamics
+ long-lasting acceleration after bounce (no inflation)

M. De Cesare, A. Pithis, M. Sakellariadou, '16

* non-normalisable condensate states (hints of GFT phase transition?) . ‘
A. Pithis, M. Sakellariadou, P. Tomov, ‘16

« first steps with cosmological perturbations S. Gielen, '14, 15
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

+ starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions,
G=SU(2), dynamics encodes embedding into SL(2,C) ~ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, ‘07
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

+ starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions,
G=SU(2), dynamics encodes embedding into SL(2,C) ~ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, ‘07

+ coupling of free massless scalar field (+ truncation at lowest order ~ slowly varying field)

&E(g\/) ? L,E(g\,. ‘f‘f") K2(gv1 y 8wy P1, (-’5’2) K2(gv1 y 8vas ((.-"j’l (;,-’)2)2)

Vs(8v,r 0a) = Va(g,) [ [ 6(0a — 1)
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

+ starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions,
G=SU(2), dynamics encodes embedding into SL(2,C) ~ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, ‘07

+ coupling of free massless scalar field (+ truncation at lowest order ~ slowly varying field)

ﬁ(g\/) ? ‘fa(gv- ff‘f") K2(gv1 y 8wy P1, (-’5’2) K2(gv1 y 8vas ((r"f’l (;,-)2)2)

Vs(8v,: Pa) = Vs(&v,) H (s — ¢1)

+ reduction to isotropic condensate configurations (depending on single spin variable j):

o) ~exp [ dgddole. ) (6. 0) ) 10 o(8n0) = o5(0)
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

+ starting from (generalised) EPRL model for 4d Lorentzian QG (simplicial interactions,
G=SU(2), dynamics encodes embedding into SL(2,C) ~ simplicity constraints)

Engle,Pereira, Rovelli, Livine, '07; Freidel, Krasnov, ‘07

+ coupling of free massless scalar field (+ truncation at lowest order ~ slowly varying field)

ﬁ(g\/) ? ‘fa(gv- ff‘f") K2(gv1 y 8wy P1, (-’5’2) K2(gv1 y 8vas ((r"f’l (;,-)2)2)

Vs(8v,: Pa) = Vs(&v,) H (s — ¢1)

+ reduction to isotropic condensate configurations (depending on single spin variable j):

o) ~exp [ dgddole. ) (6. 0) ) 10 o(8n0) = o5(0)

+ effective condensate hydrodynamics (non-linear quantum cosmology):

a2 - (. 4 _
E‘;‘)MJ (@) — Bjoj(¢) + wjoi(9)" = “] functions A, B, w define the details of the EPRL model
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

) ; . interaction terms sub-dominant (dilute-gas approx.
A0%0, — Bio; W, o, L= gl o It (ariute-g '
[ 1997 () i3 (9) +w;o;(¢) consistent with simple approximation of vacuum state)

)
* two (approximately) conserved quantities (per mode): £ = A;|0,0,(¢)> — Bylo;(0)]* + =Re (w;o;(¢)")
. )
; | ¢ f h ; N f'
0 ((fa‘)) = D ((;,"))(,'I()j () (-c)_;' 5 [(T“ (r,-:)r),;,ﬂl,,-(r,-:) (T‘f-(q-;)()r;,r‘rj((,-;)}
m? Bi/A, Pl — ﬁ —mip; =0 . . . g 2
J SO J /Jf: 2 E; ~ (/)3)_ | p;(()j)“ mip° (JJ,— ~ Py 0.;'
+ key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed “time”) V() Z Vioi(¢)o, (o) Z Vipi(¢)? Vi~ 337205,
J b
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

) ; . interaction terms sub-dominant (dilute-gas approx.
A0%0, — Bio; W, o, L= gl o It (ariute-g '
[ 1997 () i3 (9) +w;o;(¢) consistent with simple approximation of vacuum state)

)
* two (approximately) conserved quantities (per mode): £ = A;|0,0,(¢)> — Bylo;(0)]* + =Re (w;o;(¢)")
. )
; | ¢ f h ; N f'
0 ((fa‘)) = D ((;,"))(,'I()j () (-c)_;' 5 [(T“ (r,-:)r),;,ﬂl,,-(r,-:) (T‘f-(q-;)()r;,r‘rj((,-;)}
m? Bi/A, Pl — ﬁ —mip; =0 . . . g 2
J SO J /Jf: 2 E; ~ (/)3)_ | p;(()j)“ mip° (JJ,— ~ Py 0.;'
+ key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed “time”) V() Z Vioi(¢)o, (o) Z Vipi(¢)? Vi~ 337205,
J b

Pirsa: 16110048

Page 121/154



Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

A.0%0:(d) — B.io. w.o:(HV =0 interz_action lelrms‘sub—dominar_ﬂ (di_lute-gas approx.,
[ 9375 (9) i95() + w;o;(9) consistent with simple approximation of vacuum state)
)
* two (approximately) conserved quantities (per mode): £ = A;|0,0,(¢)> — Bylo;(0)]* + =Re (w;o;(¢)")
X )
! h) (¢ ) h N
o, ((;‘b) = p; ((;j))("f“j (¢h) (-c)_;' 5 [(T“ (r,-:)r),;,ﬂl,,-(r,-:) (T‘f-(q-;)()r;,r‘rj((,-;)}
m? Bi/A, Pl — ﬁ —mip; ~ 0 9 2
J Je5 Lo 2 By~ (p))* + pi(#))* = mip? Q; = pj 0.;'
+ key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed “time”) V(o) Z Vioi(¢)o;(dh) Z Vipi (o) Vi ~ ’/ 23,
momentum of scalar field (at fixed “time”™) Ty = (ﬁ‘ﬂ',,((? |0') =h Z (;,);

constant of motion ~ continuity equation

Pirsa: 16110048

Page 122/154



Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

A.0%0:(d) — B.o. w.o:(HYE =0 interz_action lelrms‘sub—dominar_ﬂ (di_lute-gas approx.,
[ 19375 (¢) i95() + w;o;(9) consistent with simple approximation of vacuum state)
)
* two (approximately) conserved quantities (per mode): £ = A;|0,0,(¢)> — Bylo(0)]* + =Re (w;o;(¢)")
X )
! h) (¢ ) h N
o, ((;‘b) = p; ((;j))("f“j (¢h) (-c)_;' 5 [(T“ (r,-:)r),;,ﬂl,,-(r,-:) (T‘f-(q-;)()r;,r‘rj((,-;)}
m? Bi/A,; Pl — ﬁ —mip; ~ 0 9 2
J JI5 Lo 2 By~ (p))* + pi(#))* = mip? Q; = pj 0.;'
+ key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed “time”) V(o) Z Vioi(¢)o;(dh) Z Vipi (o) Vi ~ ’/ 23,
momentum of scalar field (at fixed “time”) Ty = (ﬁ‘ﬂ',,((? |0') =h Z (;,);

constant of motion ~ continuity equation

9 92 9
g he(> .();)°
energy density of scalar field (at fixed “time”) = X = (Zf "")

/J_.,u;_. PN AY)
Z\/ - Z(Z} L.,,'f);)“
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

A.0%0:(d) — B.o. w.o:(HYE =0 interz_action lelrms‘sub—dominar_ﬂ (di_lute-gas approx.,
[ 19375 (¢) i95() + w;o;(9) consistent with simple approximation of vacuum state)
)
* two (approximately) conserved quantities (per mode): £ = A;|0,0,(¢)> — Bylo(0)]* + =Re (w;o;(¢)")
X )
! h) (¢ ) h N
o, ((;‘b) = p; ((;j))("f“j (¢h) (-c)_;' 5 [(T“ (r,-:)r),;,ﬂl,,-(r,-:) (T‘f-(q-;)()r;,r‘rj((,-;)}
m? Bi/A,; Pl — ﬁ —mip; ~ 0 9 2
J JI5 Lo 2 By~ (p))* + pi(#))* = mip? Q; = pj 0.;'
+ key relational observables (expectation values in condensate state) with scalar field as clock:
universe volume (at fixed “time”) V(o) Z Vioi(¢)o;(dh) Z Vipi (o) Vi ~ ’/ 23,
momentum of scalar field (at fixed “time”) Ty = (ﬁ‘ﬂ',,((? |0') =h Z (;,);

constant of motion ~ continuity equation

9 92 9
g he(> .();)°
energy density of scalar field (at fixed “time”) = X = (Zf "")

/J_.,u;_. PN AY)
Z\/ - Z(Z} L.,,'f);)“
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

- r 4 f.,):: 2 9 ’ F -, r 1 ¢ 2
( v ): 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.: \-J [lf,‘j { .lm;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;
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Emergent bouncing cosmology from ful QG

DO. Sindoni, Wilson-Ewing, ‘16

effective dynamics for volume - generalised Friedmann equations:

- ol o\ i it
1 2 22,\.,15\ I;,—F:'.- -+ m5p; l_'__
(",\_) m 3%, Vi !
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

- r 4 f.,):: 2 9 ’ F -, r 1 ¢ 2
( v ): 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.: \-J [lf,‘j { .lm;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

~ 1y ) Q7 20 0 1 | Yoy 2
( v )-z 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.i \-J [lf,‘j { .lm;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;

I 3} / [)_j((/’) % 0 V(/) I V = Z; V';/)f generic quantum bounce!

remains positive at all times
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

- r 4 f.,):: 2 9 ’ F -, r 1 ¢ 2
( v ): 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.: \-J [lf,‘j { .lm;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

~ 1y ) Q7 20 0 1 | Yoy 2
( v )-z 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.i \-J [lf,‘j { .lm;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;

I 3} / [)_j((/’) % 0 V(/) I V = Z; V';/)f generic quantum bounce!

remains positive at all times
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

~ 1y , @ 20 0 1 | Yoy 2
( v )-z 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.i \.-J [lf,‘j f ,_)-m;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;

4 * .
p — V. 02 generic quantum bounce!
# 3.] / [)_j((/J) ?’é 0 V(/) » v Z.’I V;"p.‘l' + primordial accelleration

% remains positive at all times De Cesare, Sakellariadou, 16
. 2 A S 2 1 2 /02
« classical approx. [ > IJJ' /IHJ- and P > (.D)J-/IN-J-

;
N 2 . 2\ 2 , , 2 9 . ,
I ( V! ) (2 Z‘,‘ Vim; P V! 4 Z.; Lf_’ jM;p;| approx. classical Friedmann

- : — —_—= = eqns if 1% ~ 3G
0 sVl ) ]V TS, v g 3
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

~ 1y , @ 20 0 1 | Yoy 2
( v )-z 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.i \.-J [lf,‘j f ,_)-m;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;

4 * .
p — V. 02 generic quantum bounce!
# 3.] / [)_j((/J) ?’é 0 V(/) » v Z.’I V;"p.‘l' + primordial accelleration

% remains positive at all times De Cesare, Sakellariadou, 16
. 2 A S 2 1 2 /02
« classical approx. [ > IJJ' /IHJ- and P > (.D)J-/IN-J-

;
N 2 . 2\ 2 , , 2 9 . ,
I ( V! ) (2 Z‘,‘ Vim; P V! 4 Z.; Lf_’ jM;p;| approx. classical Friedmann

- : — —_—= = eqns if 1% ~ 3G
0 sVl ) ]V TS, v g 3
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16

) | . interaction terms sub-dominant (dilute-gas approx.
A;0%0,(¢) — Bjo, wio; () =0 niere e T AGe-g !
[ 1997 () j95(0) + w;o(¢) consistent with simple approximation of vacuum state)

)
* two (approximately) conserved quantities (per mode): £ = A;|0,0,(¢)> — Bylo;(0)]* + =Re (w;o;(¢)")
; f . f / ; N fl
n‘,j(@"}) = /)‘j((;"5)('?“;.(‘;}) @j 2 [ﬁ“("”) %05(9) = 0 ((‘”)()’”’G’(("'})}

0z
m? = B,/A, Lm0 o o 0 ‘
7= Bl [“ g i By~ () + 220 = mipt Q  pl0;
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

9

G 1/ ) Q3 2,2 2% V.| B Y2 2
(\,,)g 2> Vip, \/h_, ﬂ-_;,“ Fomip; v -32,.,‘ l-J[lﬂ- | J-HJHJJ

3V 322 Vip? V ZJ ""'.'f/’,.f
I =p 0V I [v _ Z V. \)2 generic quantum bounce!
J / [)j((/)) % (/) J Jl J + primordial accelleration
Y remains positive at all times De Cesare, Sakellariadou, '16
. 2 Y a2 1 2 foy2
+ classical approx. £j > |Ej|/m7 and pj > QF/m]
N [
- 2 ! 7 a2 - - 7 2 9 | .
( v ) (3 > Vimg p; Ve 4 Z,; Vim3p; :gg;oi?. cI%531c§‘I(Iirledmann
—P 2/ . 7 2 ET2 D) mj ~ 3GN
31 33, Vip? U >, Vip?

» simple condensate: TR ( V! ) AnG (1 /’) } VieEjs  LQC-like
ai(¢) =0, for all j # j, 3V 3 #1% modified
D0 (i?r(«'hf"/ll',f ~ (67/5%) pp1 dynamics!
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Emergent bouncing cosmology from full QG

DO, Sindoni, Wilson-Ewing, ‘16
effective dynamics for volume - generalised Friedmann equations:

9

~ 1y , @ 20 0 1 | Yoy 2
( v )-z 2 LJ. Vip, \/h_} 7 Fmip; v 2 L.i \.-J [lf,‘j f ,_)-m;/ﬂ
3V 322 Vip? V ZJ ""'.'ff’,.;

4 * .
p — V. n? generic quantum bounce!
# Hj / p.’i((/)) 7£ 0 V(/) * v Z.’I V;"p.f + primordial accelleration

(__remains positive at all times De Cesare, Sakellariadou, 16
: 2 A a2 1 2 f0rr2
« classical approx. /)j > IJI /IHJ- (Hl(l j).}- > (.D)J-/IN-J-
s
vroo4y, Vim?p?| approx. classical Friedmann
. J o Jly

. ] P
eqns if m7 ~ 3G N

| (\’) i 2 Z‘,‘ Vim; pf
3V 3 Z,f’ Vit }f L Vi ZJ Vit ).j

- simple condensate: - (1-’" ) e (l ,;) } ViEi.  LOCulike
a;(¢) =0, for all j # j, 3V 3 9V modified
e (iﬁ(:’hf"/l:}f ~ (67 /33 ppy dynamics!

can show that
1) generic solutions approximate such simple condensates at late times Gielen, '16 De Cesare, Pithis, Sakellariadou, '16
2) GFT interactions can make primordial acceleration last enough e-folds to avoid need for inflation
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More questions....
what's next”




What happens to the cosmological singularity?

Big Bounce? DO, L. Sindoni, E. Wilson-Ewing, ‘16 M. De Cesare, A. Pithis, M. Sakellariadou, '16

given effective cosmological equations for GFT condensates,
very similar to LQC
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What happens to the cosmological singularity?

Big Bounce? DO, L. Sindoni, E. Wilson-Ewing, ‘16 M. De Cesare, A. Pithis, M. Sakellariadou, '16

given effective cosmological equations for GFT condensates,

' !
very similar to LQC (Big Bounce from the full theory!)

SPACE-TIME s CASSIAL

Y
\ WS
Lt h |
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What happens to the cosmological singularity?

i ?
Blg Bounce DO, L. Sindoni, E. Wilson-Ewing, ‘16 M. De Cesare, A. Pithis, M. Sakellariadou, '16

given effective cosmological equations for GFT condensates,
it can be derived via the same type of calculations done in LQC ....
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What happens to the cosmological singularity?
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What happens to the cosmological singularity?

i 2
Big Bounce DO, L. Sindoni, E. Wilson-Ewing, ‘16 M. De Cesare, A. Pithis, M. Sakellariadou, '16

given effective cosmological equations for GFT condensates,

i |
it can be derived via the same type of calculations done in LQC .... (Blg Bounce trom the full theoryl)

.... provided the GFT hydrodynamics approximation (and other assumptions) does not break down in that regime

Pirsa: 16110048 Page 141/154



What happens to the cosmological singularity?

i 2
Big Bounce DO, L. Sindoni, E. Wilson-Ewing, ‘16 M. De Cesare, A. Pithis, M. Sakellariadou, '16

given effective cosmological equations for GFT condensates,
it can be derived via the same type of calculations done in LQC ....

(Big Bounce from the full theory!)

.... provided the GFT hydrodynamics approximation (and other assumptions) does not break down in that regime

scenario of Big Bang as cosmological phase transition (geometrogenesis) suggests it should break down

geometrogenesis scenario similar to “emergent universe” scenario with degenerate scale factor before transition

Pirsa: 16110048 Page 142/154



What happens to the cosmological singularity?

i 2
Big Bounce DO, L. Sindoni, E. Wilson-Ewing, ‘16 M. De Cesare, A. Pithis, M. Sakellariadou, '16

given effective cosmological equations for GFT condensates,

i |
it can be derived via the same type of calculations done in LQC .... (Blg Bounce trom the full theoryl)

.... provided the GFT hydrodynamics approximation (and other assumptions) does not break down in that regime

scenario of Big Bang as cosmological phase transition (geometrogenesis) suggests it should break down
geometrogenesis scenario similar to “emergent universe” scenario with degenerate scale factor before transition

if it does break, one has to go back to the full GFT theory, and improve the
construction (ansatz for vacuum, approximation of SD equations, ....)
and then try again
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What happens to the cosmological singularity?

i 2
Big Bounce DO, L. Sindoni, E. Wilson-Ewing, ‘16 M. De Cesare, A. Pithis, M. Sakellariadou, '16

given effective cosmological equations for GFT condensates,

i |
it can be derived via the same type of calculations done in LQC .... (Blg Bounce trom the full theoryl)

.... provided the GFT hydrodynamics approximation (and other assumptions) does not break down in that regime

scenario of Big Bang as cosmological phase transition (geometrogenesis) suggests it should break down
geometrogenesis scenario similar to “emergent universe” scenario with degenerate scale factor before transition

if it does break, one has to go back to the full GFT theory, and improve the
construction (ansatz for vacuum, approximation of SD equations, ....)
and then try again

novelty: it can be done!
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GFT condensate cosmology: phenomenology?

goal: effective dynamics of cosmological perturbations from first principles, i.e. from full QG formalism

needed for computation of CMB spectrum and for tests of fate of Lorentz invariance
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GFT condensate cosmology: phenomenology?

goal: effective dynamics of cosmological perturbations from first principles, i.e. from full QG formalism
needed for computation of CMB spectrum and for tests of fate of Lorentz invariance

several possible strategies: . ., ,
cheap” - dressed metric approach:

1) define modified FRW metric from expectation values for cosmological variables derived from GFT
2) just use it inside standard effective QFT for fields

‘intermediate” - “separate universe approach”:
several homogeneous patches, each satisfying modified Friedmann eon
compute effective dynamics of volume differences (scalar perturbations, valid at long wavelength)
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goal: effective dynamics of cosmological perturbations from first principles, i.e. from full QG formalism
needed for computation of CMB spectrum and for tests of fate of Lorentz invariance

several possible strategies: . ., ,
cheap” - dressed metric approach:

1) define modified FRW metric from expectation values for cosmological variables derived from GFT
2) just use it inside standard effective QFT for fields

‘intermediate” - “separate universe approach”:
several homogeneous patches, each satisfying modified Friedmann eon
compute effective dynamics of volume differences (scalar perturbations, valid at long wavelength)

“ambitious”:
1) derive effective dynamics for GFT fluctuations above condensate from full theory
2) recast it in standard spacetime-based QFT form using information from background GFT condensate
(difficulty is: the formalism naturally gives it in diffeo-invariant variables, spacetime-free form)
need to add material reference frame to define local regions
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GFT condensate cosmology: phenomenology?

goal: effective dynamics of cosmological perturbations from first principles, i.e. from full QG formalism
needed for computation of CMB spectrum and for tests of fate of Lorentz invariance

several possible strategies: . ., ,
cheap” - dressed metric approach:

1) define modified FRW metric from expectation values for cosmological variables derived from GFT
2) just use it inside standard effective QFT for fields

‘intermediate” - “separate universe approach”:
several homogeneous patches, each satisfying modified Friedmann eon
compute effective dynamics of volume differences (scalar perturbations, valid at long wavelength)

“ambitious”:
1) derive effective dynamics for GFT fluctuations above condensate from full theory
2) recast it in standard spacetime-based QFT form using information from background GFT condensate
(difficulty is: the formalism naturally gives it in diffeo-invariant variables, spacetime-free form)
need to add material reference frame to define local regions

expect deformation of standard QFT:
. from holonomization of the connection and non-commutativity of triad variables
+ derivation of effective dynamics of perturbations around mean field in topological GFT:

non-commutative scalar field theory on non-commutative flat space
W. Fairbairn, E. Livine, '07; F. Girelli, E. Livine, DO, '09
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Still a long journey ahead....
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Thank you for your attention!




