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Abstract: <p><strong>In this talk we present the study of canonical gravity in finite regions for which we introduce a generaisation of the
Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on a spacelike hypersuface with a boundary
sphere and show how the presence of this term leads to a new type of degrees of freedom coming from the restoration of the gauge and
diffeomorphism symmetry at the boundary. In the presence of aloop quantum gravity state, these boundary degrees of freedom localize along a set
of punctures on the boundary sphere. We demonstrate that these degrees of freedom are effectively described by auxiliary strings with a
3-dimensional internal target space attached to each puncture. We show that the string currents represent the local frame field, that the string angular
momenta represent the area flux and that the string stress tensor represents the two dimensional metric on the boundary of the region of interest.
Finally, we show that the commutators of these broken diffeomorphisms charges of quantum geometry satisfy at each puncture a Virasoro algebra
with central charge ¢ = 3. This leads to a description of the boundary degrees of freedom in terms of a CFT structure with central charge
proportional to the number of loop punctures. The boundary SU(2) gauge symmetry is recovered via the action of the U(1) 3 Kac-Moody generators
(associated with the string current) in a way that is the exact analog of an infinite dimensional generalization of the Schwinger
Spin-representation.</strong></p>

<p> </p>

<p><strong>(Based on the joint work with Laurent Freidel and Alejandro Perez arXiv:1611.03668)</strong></p>
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A couple of old ideas:

+ Boundaries break gauge symmetries and new degrees of freedom
appear when trying to restore them

[Benguria, Cordero, Teitelboim '77]; [Smaolin '95]; [Teitelboim "95]; [Carlip "99]...

recently revisited in [Freidel, Perez '15], [Donnelly, Freidel "16]

+ CFT degrees of freedom naturally dwell around punctures
[Witten '89]; [Moore, Seiberg "89]

explored in the context of LQG in [Ghosh, Pranzetti '14]
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The new degrees of freedom that arise from the presence of a boundary are physical:

o They represent the set of all possible boundary conditions that need to be
included in order to reconstruct the expectation value of all gravity observables

e They correspond to partial observables, which could represent
detectors on a boundary or physical boundary conditions

¢ They are needed in the reconstruction of the total Hilbert space in
terms of the Hilbert space for the subsystems (edge states/soft modes):
They encode entanglement between subsystems

® They also represent the degrees of freedom that one needs in order to
couple the subsystem to another system in a gauge invariant manner
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Ingredients

¥ A generalized Gibbons-Hawking-York boundary term

¢ The new boundary degrees of freedom organize themselves under the representation
of the conformal symmetry group. Local conformal invariance realized through the
thickening of the spin network links into spin-tubes

originally postulated in [Smolin "95], [Major, Smolin "95]

and recently resurfaced in the context of spin foam amplitudes computation in [Haggard, Han, Kaminski, Riello "14]

¢ Background geometry assumption: the tangential curvature of the connection vanishes
everywhere on the boundary except at the location of a given set of punctures.
Motivated also by the new, dual vacuum of loop gravity

hinted by [Bianchi '09], established at the semiclassical level by [Freidel, Ziprick "13],
implemented in the quantum theory by [Dittrich, Geiller '14]
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Phase space analysis

> We want to consider the canonical structure of general relativity in the first order formalism
on a 3d slice that possesses a 2d boundary punctured by spin network links.

We start from a formulation of gravity on a manifold A/ x JR with a boundary two sphere S*

3d space-like hypersurface

. 1 ,
S = E' A Frj(w) + [ e; Adge!
D} : 2 m :

ZYK M xR JS2xR

! r.J

t = 8wy, v : Barbero-Immirzi parameter, ¢’ ¢ Frame field, w'’ : 4d spin connection
Al = (u..’” + 7y % u.-"r'l) Boundary ‘connection’
E = [(r'j A r"i_) +y ok (r"f A ("'r_)]‘,m“\. Flux defined by the simplicity constraint

——

gives the Holst term which vanishes on-shell

e Notice that, due to the boundary term, the action is differentiable for arbitrary variations of the fields
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The boundary action term:

, | I I
Stound — f er A (1_4(‘.1 [ —xwl A (e ney)+ —er A rﬂwr:’(

SxR SxR !

® By choosing a Lorentz gauge where one of the tetrad is fixed to be the normal to the boundary,
it is easy to see that the first component is simply given by the integral of the well known
Gibbons-Hawking-York boundary density:

sw!? A (egney) — WhEK

f = determinant of the induced metric on the boundary
where
I = trace of the boundary extrinsic curvature

e The second cone is a new addition to the standard boundary term of the metric formulation,
which vanishes on shell due to the torsion free condition (Cartan eq.):

I I T
ToerA de is a natural complement to the Holst term in the bulk action -y lI‘;_,r(m) Ael Ae!
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normal to M Spin connection  Extrinsic curvature coframe fields tangent to A/

_ ; - , \‘. ¢,. . 1N\ .
4+ Time gauge: dn' =0, n=-¢'ny A I+ ~K" PN €k el A et
. . . ] o . ] o N
Symplectic 2-form: Q=0+ = (0A* ANOX;)+- (0e; Aoe’)
KAy M .-Za‘n'.‘} Jg2

The extended phase space

Poisson brackets: { A :; {J)* \::"(“) } a HN}"{)-U € r!hr'fs:{("" - U) { (I:: l}) ) € Ji ( l” } K7y 0 j'-' rrfr"\.: [’ -y }

bulk phase space boundary phase space
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The preservation of the gauge and diffeomorphism symmetry in the presence of the boundary

imposes the validity of additional boundary constraints

Boundary constraints:

1
=
® Boundary Gauss law }—J-.i bulk _) [(T_- (':]-.i|ham.rrr!u.r-y

Boundary simplicity constraint: Matching of bulk and boundary area elements
(the requirement of gauge invariance replaces the boundary condition 8/ = ())

Initially, € commutes with all the bulk fields A and 3, and Y, commutes with itself:

it is the simplicity constraint, which enables the preservation of SU(2) symmetry in the presence of a
boundary, that leads to the flux non-commutativity already at the classical level
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Algebra of boundary constraints

Hamiltonian generators associated to the boundary constraints:

The Poisson bracket is related to the symplectic structure via { ", ('} = Q(ds, 6¢;)

where ;o is the Hamiltonian variation generated by [, Q(dp,0) =0F

The two generators associated with the Gauss and diffeo constraints are obtained from the symplectic structure through

S-Z({}l-“, {5) = (L}-(;”(H'),

. I (1 - .
w Gpla)s= - (‘) _/;,“f[f el ‘/;[llj-,r\" A .‘-'-_],’) ,
VY N2 ]

boundary extension of the Gauss constraint

By integrating by parts the bulk term we see
that it imposes the Gauss Law d %" =0 and

the boundary simplicity constraint 3, = 1/2[¢, ¢];

also generator of internal rotations
(57”(',_ = [r‘l,(‘},

Q(6,,0) =6Sp(¢)

so(e) = = ([ daeers [ R Alee))

boundary extension of tangent diffeos generator

where ' = ¢!

" and
il

©=¢"d, is a vector tangent to M

also generator of the transformations

[ At K
rj_‘r,{. _(]-"I"f' = L;_;(

Page 11/30



Pirsa: 16110033 Page 12/30




Kac-Moody charges

> Our goal now is to study the quantisation of this boundary system in the presence of the background fields

) ) ] : ,
Boundary charges: (2p(y) = T j“ dag' A where = '7; SU(2)-valued field
AV vy J
. . o o | -
» Qp(9)= - 2 Qu(%) and Qp(p)= = 56 ple;
S P \VATTRY JO),
on-shell of dae; =10

By means of the PB {

r-,’;(.:')!(“{;(_u)} = Ky t)’-”f”g_.r’iz(.l.',_!]) and solving the condition f*”'(;‘l) - BWI\":H(.:-]

in the neighborhood of the puncture and fixing the gauge freedom: A = K ,d0

(in this gauge the gauge field is constant and the fields are periodic)
0

> v

Cp

(5,' i .
rp r o d . y ,
2?1— ‘%““(\F—} (lf.,‘"’,i: - f\ .“LH:)‘.‘_.‘“J-,[(”.))

ﬁ {(-(?,“(Lf'?)‘(-L)Ti’(‘fh)} =

By defining the modes ()7, = Q(7/¢'""), where [7',77] = ¢'/*7, anti-hermitian basis

- {(QL,('JZ,}N_} = —i ('Hr‘.\“’."' + K"-’) Onsm . where K =—ic kI,
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4 In the case where the curvature vanishes we simply get {(2:, , ('t_):f” } = —ind 8, m

IS U(1)" Kac-Moody algebra with central extension equal to 1

4+ In the presence of curvature, we obtained a three dimensional abelian Kac-Moody algebra twisted by A :
Let us work in a complex basis: 7" = (77, 7", 77), = (r' #irH)V2, [P 5] = wirt, (77,7 ] =ir?
where N =k7y and K s diagonal, with (a =3.+,-), a=(3,-,+)

then the twisted Kac-Moody algebra can then be written compactly as ({}— —'i[-. |) :

\\
[Qit, Qi}”] = f)‘”b(—u } /\f”"_)(s“_,-m_ where k" = (0, +k, k), }-_,_:A;., =0

A Kac-Moody algebraic structure follows directly from the gravitational symplectic structure
when distributional configurations (punctures) are considered

¢ The theory associated with k and with k + 1 are equivalent.
This equivalence corresponds to the fact that at the quantum level the connection is compactified,
a fact that here is derived completely naturally in the continuum,

¢ We will restrict in the following to k € Z/N for some integer N
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Virasoro generators

> Generator of boundary diffeomorphisms along a vector field v ¢}, tangent to S2:

Op(Ly,d) =0Ty , where L,e' :=v J1de’ 4 da(v o f"‘.)

, L r L
» .l‘,” = - / I;,_uf’Ii f‘.(f.r = \% (“ ,‘f”‘.)t”.';
2ky JD 2y Job, ’
We can introduce the modes L") := 1, (exp(ifin)dy) . explicitly

| TeHe;
; O ey rt b
L;” = :}— f f'r " I{_)U (IU ‘ where If_”_} =
LT .

Ky

The SET modes can be obtained from the Kac-Moody modes (’2:’, through the Sugawara construction:

At th fum level Ly = -3 3100 h QLQ" Q@ il k>0
e quantum leve m ==, 2, Wt o where UL =4 0 a
9 9 L Ly N0 QO ifn+ k<0
, [ P ) " ( il AVaL
= (Lo, L] = —=m)Lym+ Fn.(-u." = Ddnsm.o (L, Q%] = =(m+kIQ",,,
the currents are primary fields
On the completely algebraic level, we obtain a Virasoro algebra with ¢ = 3 of weight 1 twisted by &
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Algebra of boundary constraints

Hamiltonian generators associated to the boundary constraints:

The Poisson bracket is related to the symplectic structure via { ", ('} = Q(ds, 6¢;)

where ;o is the Hamiltonian variation generated by [, Q(dp,0) =0F

The two generators associated with the Gauss and diffeo constraints are obtained from the symplectic structure through

S-Z({}l-“, {5) = (L}-(;”(H'),

. I (1 - .
w Gpla)s= - (‘) _/;,“f[f el ‘/;[llj-,r\" A .‘-'-_],’) ,
VY N2 ]

boundary extension of the Gauss constraint

By integrating by parts the bulk term we see
that it imposes the Gauss Law d %" =0 and

the boundary simplicity constraint 3, = 1/2[¢, ¢];

also generator of internal rotations
(57”(',_ = [r‘l,(‘},

Q(6,,0) =6Sp(¢)

so(e) = = ([ daeers [ R Alee))

boundary extension of tangent diffeos generator

where ' = ¢!

" and
il

©=¢"d, is a vector tangent to M

also generator of the transformations

[ At K
rj_‘r,{. _(]-"I"f' = L;_;(
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Kac-Moody charges

> Our goal now is to study the quantisation of this boundary system in the presence of the background fields

) ) ] : ,
Boundary charges: (2p(y) = T j“ dag' A where = '7; SU(2)-valued field
AV vy J
. . o o | -
» Qp(9)= - 2 Qu(%) and Qp(p)= = 56 ple;
S P \VATTRY JO),
on-shell of dae; =10

By means of the PB {

r-,’;(.:')!(“{;(_u)} = Ky t)’-”f”g_.r’iz(.l.',_!]) and solving the condition f*”'(;‘l) - BWI\":H(.:-]

in the neighborhood of the puncture and fixing the gauge freedom: A = K ,d0

(in this gauge the gauge field is constant and the fields are periodic)
0

> v

Cp

(5,' i .
rp r o d . y ,
2?1— ‘%““(\F—} (lf.,‘"’,i: - f\ .“LH:)‘.‘_.‘“J-,[(”.))

ﬁ {(-(?,“(Lf'?)‘(-L)Ti’(‘fh)} =

By defining the modes ()7, = Q(7/¢'""), where [7',77] = ¢'/*7, anti-hermitian basis

- {(QL,('JZ,}N_} = —i ('Hr‘.\“’."' + K"-’) Onsm . where K =—ic kI,
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Intertwiner

Can we recover the SU(2) local symmetry algebra generated by })' for transformations

that affects only the boundary modes while leaving the background fields invariant?

Yes, when the curvature is integer-valued. Concretely, when k = ), we introduce

QLR : .
M= M - [M",M7] =€, M
Ao 2n '
Infinite dimensional analog of the Schwinger representation of the quanta of Flux at each puncture

generators of rotations: a new representation of the su(2) Lie

M = [ 2%
algebra generators in terms of the U(1)3 Kac-Moody ones P b,

[L,, j‘t["] =(  'w» Each puncture carries a representation of Vir x SU(2)

New boundary symmetry group whose associated charges represent new boundary observables

e In general STLP=-LP E MP = -MP »  violation of the closure constraint

y ]

g b2l

New vacuum that allows for curvature in the bulk: “Virasoro' intertwiner
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SU(2) boundary symmetry

> Sp = 1()53;((1_,) [Donnelly '08]

J1

Vir x SU(2) boundary symmetry

The shapes of the circle (the edge modes) encode entanglement

------------------------- » Sp=5(A0(7))
T o™

4 (12,mn) \
vir - sU(2)

Page 19/30



R Wi ! " ’ :
sarv 1o ' (1€ resence

| ;=_J_":’J_J - neces

~
14
bl N 1Rl | LAA A A il B il el e

[Rovelli '01]; [Dit

Pirsa: 16110033 Page 20/30




;- Aak T - SR guas phaoghi, g i

Matching of bulk and undarv area elen
plicity constraint: Matching of bulk and boundary area elen
! '”\'.'." g f gt
rement or gaug invari

Dot hAA

..--,_—;-— ,-,«-’—I,'

P

1
-.,Atw( A ot

tes with all the

b

ARy P | L o i g i
» WA "ll 1B N
L L L TP P A S T

preservation
Fis bt s
the y alread

mmutativity

Pirsa: 16110033

Page 21/30




Pirsa: 16110033

gauge
)¢

e

[: E‘[*-r"‘.—' n and

Weelh GIU we Qi

 Kac-Moody charaes on
SO NIVOSY IS AL GESI O

Pl
RLL Ll

al

/ o

PRISIR AR P B el S
gt gt L e phti s
t punc ut o i 0

1 Pl Ee UM ¢INE

Al L

woosina a backarsot
T el L LTV S LPRE I

el

b daia b

"0
L

Page 22/30




Pirsa: 16110033

o ol ey Py l.m PN SN
d b "

'ucture induced by the infroductiol

F il L

the static]
ne idiie

g
Alb Sl Ll L

~
e
s Vi

OB

fleidds die

Page 23/30




sw readv 1o rederive the Kac—Maady al

HEACy 10 T00ETIVE The Rac=viooay aigebs

s e e 3 - v 1t 22k el T s
e currents and quasi-periodicity conditior
Ry A ! e H»\-—-n"‘_.&.v- bbbt P L E

]

Weg have |

Pirsa: 16110033 Page 24/30




Pirsa: 16110033 Page 25/30




vial
b,

1 i
1On=T1

L VaIdre

Pl
i or

At d i,

R

Pirsa: 16110033 Page 26/30




ral vac

- " P

sence of boundaries [ b g
pF bouncdc 0] /]
L TR N N T R Y R

nc
el

Pirsa: 16110033 Page 27/30




unt for

Pirsa: 16110033 Page 28/30




,;_,.,,.
enian
"«. 1-"i|r |) :';",‘q,nu TrY, :ﬁ\.r.'.'."_‘k

= e
ot -~y
/| b

313

L ;_.r,-; Lo LA T
ve Lit:‘:;\. \ K ».Mm et '\,"'

e
I b

TTOIm
11V

Pirsa: 16110033 Page 29/30




Through the Suagwara construction, the f) component of the energy-momentum tensor
are related to the Virasoro generators

| gy .
Ly, = )l( """ Tyy 6

2m .

A
Tr(.()('”.’-

Ky

where 7}_} 0=

- Our construction equates the 2-dimensional metric on the boundary

with the string energy-momentum tensor

. 7
I'ap = —gap
Ry

However, for a full reconstruction of the energy-momentum tensor in terms
of currents, we need to study more in the detail the (: component
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