Title: A conceptual viewpoint on information decomposition

Date: Nov 08, 2016 03:30 PM

URL: http://pirsa.org/16110030

Abstract: Can we decompose the information of a composite system into terms arising from its parts and their interactions?

br>

For a bipartite system (X,Y), the joint entropy can be written as an algebraic sum of three terms: the entropy of X alone, the entropy of Y alone, and the mutual information of X and Y, which comes with an opposite sign. This suggests a set-theoretical analogy: mutual information is a sort of "intersection", and joint entropy is a sort of "union". $\langle br \rangle$

The same picture cannot be generalized to three or more parts in a straightforward way, and the problem is still considered open. Is there a deep reason for why the set-theoretical analogy fails?

Category theory can give an alternative, conceptual point of view on the problem. As Shannon already noted, information appears to be related to symmetry. This suggests a natural lattice structure for information, which is compatible with a set-theoretical picture only for bipartite systems.

The categorical approach favors objects with a structure in place of just numbers to describe information quantities. We hope that this can clarify the mathematical structure underlying information theory, and leave it open to wider generalizations.

Pirsa: 16110030 Page 1/148

A Conceptual Viewpoint on Information Decomposition

Paolo Perrone

Max Planck Institute Leipzig, Germany

Perimeter Institute for Theoretical Physics 8th November 2016

Pirsa: 16110030 Page 2/148

Question:

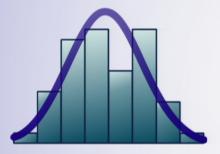
How much do parts of a system contribute to the total information?

2 of 18

Pirsa: 16110030 Page 3/148

Question:

How much do parts of a system contribute to the total information?



Statistics

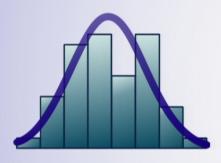
Nonlinear higher order correlations

2 of 18

Pirsa: 16110030 Page 4/148

Question:

How much do parts of a system contribute to the total information?



Statistics

Nonlinear higher order correlations

Game Theory

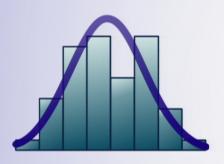
Information in games Blackwell's theorem

2 of 18

Pirsa: 16110030 Page 5/148

Question:

How much do parts of a system contribute to the total information?



Statistics

Nonlinear higher order correlations

Game Theory

Information in games Blackwell's theorem

Biological Networks

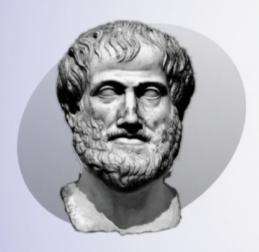
Quantify complexity of neural networks.

2 of 18

Pirsa: 16110030 Page 6/148

Question:

How much do parts of a system contribute to the total information?



"The totality is not [...] a mere heap, but the whole is something besides the parts."

- Aristotle, Metaphysics VIII

3 of 18

Pirsa: 16110030 Page 7/148

Question:

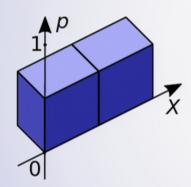
How much do parts of a system contribute to the total information?

• Shannon entropy:

$$H(X) := -\sum_{x \in X} p(x) \log p(x)$$

Question:

How much do parts of a system contribute to the total information?



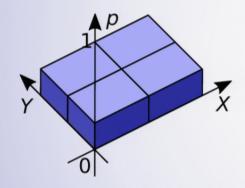
• Shannon entropy:

$$H(X) := -\sum_{x \in X} p(x) \log p(x)$$

In the example, H(X) = 1 bit.

Question:

How much do parts of a system contribute to the total information?



Joint entropy:

$$H(X,Y) := -\sum_{x,y} p(x,y) \log p(x,y)$$

In the example, H(X, Y) = 2 bits.

Question:

How much do parts of a system contribute to the total information?



• Conditional entropy:

$$H(X|Y) := -\sum_{x,y} p(x,y) \log p(x|y)$$

In the example, H(X|Y) = 0 bit.

Idea:

"The whole is greater than the sum of its parts."

4 of 18

Pirsa: 16110030 Page 12/148

Idea:

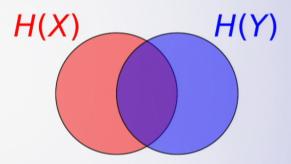
"The whole is greater than the sum of its parts."

$$H(X,Y) \leq H(X) + H(Y)$$

Idea:

"The whole is greater than the sum of its parts."

$$H(X,Y) \leq H(X) + H(Y)$$

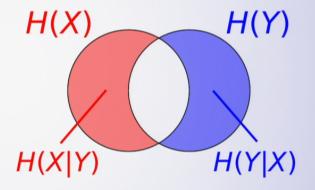


Idea:

"The whole is greater than the sum of its parts."

$$H(X,Y) \leq H(X) + H(Y)$$

$$H(X,Y) \geq H(X|Y) + H(Y|X)$$



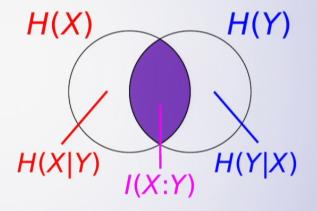
Idea:

"The whole is greater than the sum of its parts."

$$H(X,Y) \leq H(X) + H(Y)$$

$$H(X,Y) \geq H(X|Y) + H(Y|X)$$

$$I(X:Y)\geq 0$$



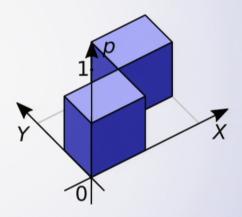
Idea:

"The whole is greater than the sum of its parts."

$$H(X,Y) \leq H(X) + H(Y)$$

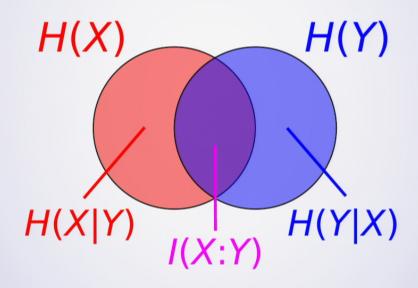
$$H(X,Y) \geq H(X|Y) + H(Y|X)$$

$$I(X:Y)\geq 0$$



Set-theoretical picture:

"Statistical interactions are like intersections."

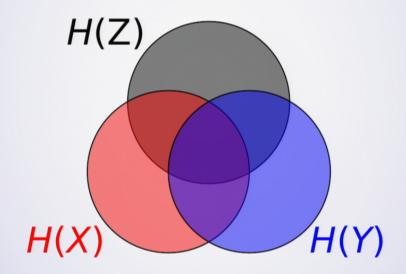


5 of 18

Pirsa: 16110030 Page 18/148

Set-theoretical picture:

"Statistical interactions are like intersections."

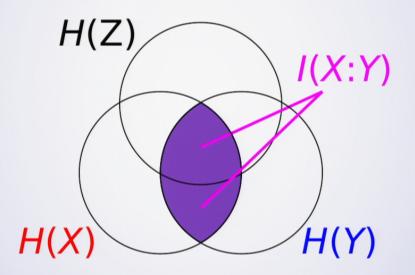


5 of 18

Pirsa: 16110030 Page 19/148

Set-theoretical picture:

"Statistical interactions are like intersections."

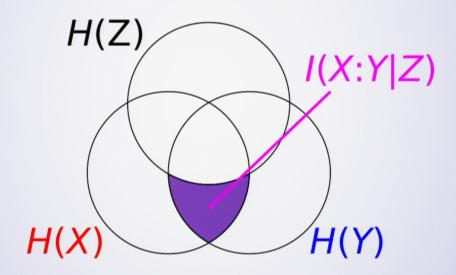


5 of 18

Pirsa: 16110030 Page 20/148

Set-theoretical picture:

"Statistical interactions are like intersections."

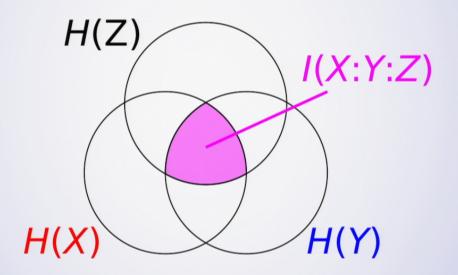


5 of 18

Pirsa: 16110030 Page 21/148

Set-theoretical picture:

"Statistical interactions are like intersections."



5 of 18

Pirsa: 16110030 Page 22/148

Problem:

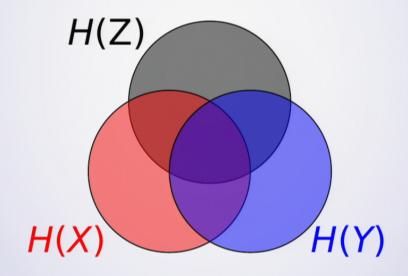
I(X : Y : Z) is not in general a positive quantity.

6 of 18

Pirsa: 16110030 Page 23/148

Problem:

I(X : Y : Z) is not in general a positive quantity. Equivalently, it is *not* true in general that $I(X : Y | Z) \le I(X : Y)$.

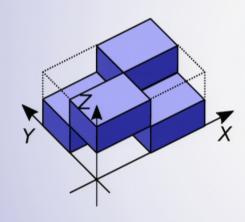


6 of 18

Pirsa: 16110030 Page 24/148

Problem:

I(X : Y : Z) is not in general a positive quantity. Equivalently, it is *not* true in general that $I(X : Y | Z) \le I(X : Y)$.



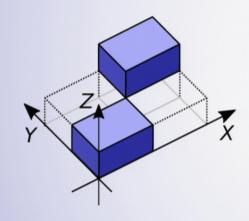
• For example, if $X = Y \oplus Z$:

$$I(X:Y)=0$$

$$I(X:Y|Z)=1$$

Problem:

I(X : Y : Z) is not in general a positive quantity. Equivalently, it is *not* true in general that $I(X : Y | Z) \le I(X : Y)$.



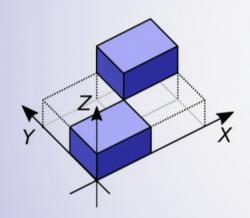
• For example, if X = Y = Z:

$$I(X:Y)=1$$

$$I(X:Y|Z)=0$$

Problem:

I(X : Y : Z) is not in general a positive quantity. Equivalently, it is *not* true in general that $I(X : Y | Z) \le I(X : Y)$.



• For example, if X = Y = Z:

$$I(X:Y)=1$$

$$I(X:Y|Z)=0$$

Schneidmann, Bialek, Berry [1] and Williams, Beer [2].

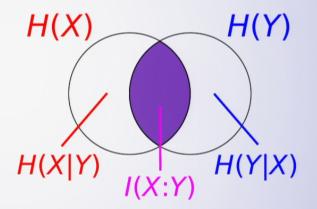
Idea:

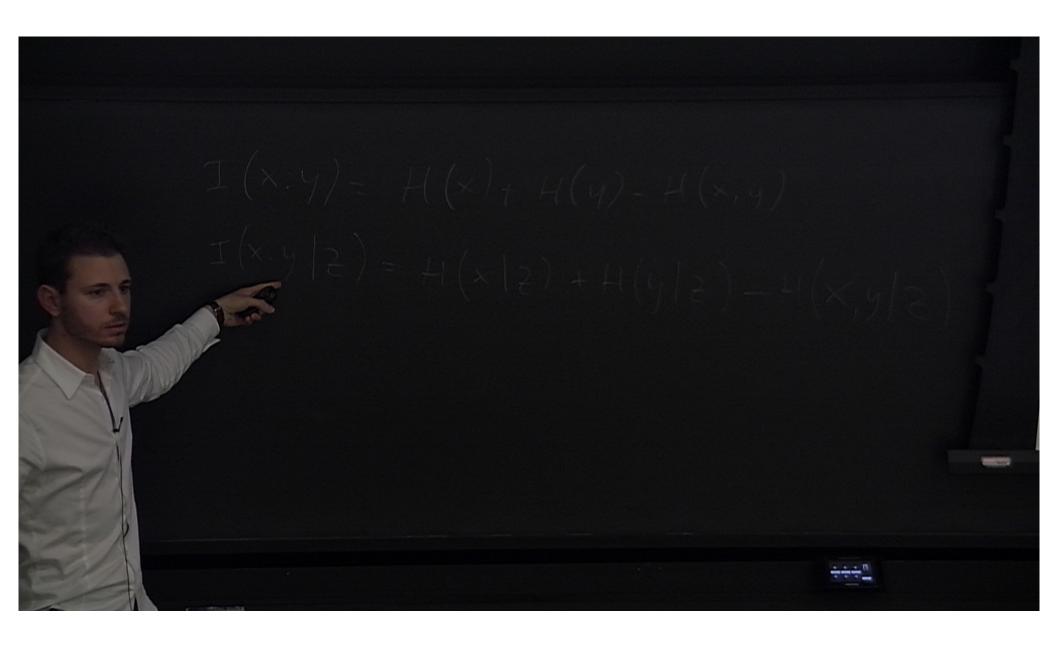
"The whole is greater than the sum of its parts."

$$H(X,Y) \leq H(X) + H(Y)$$

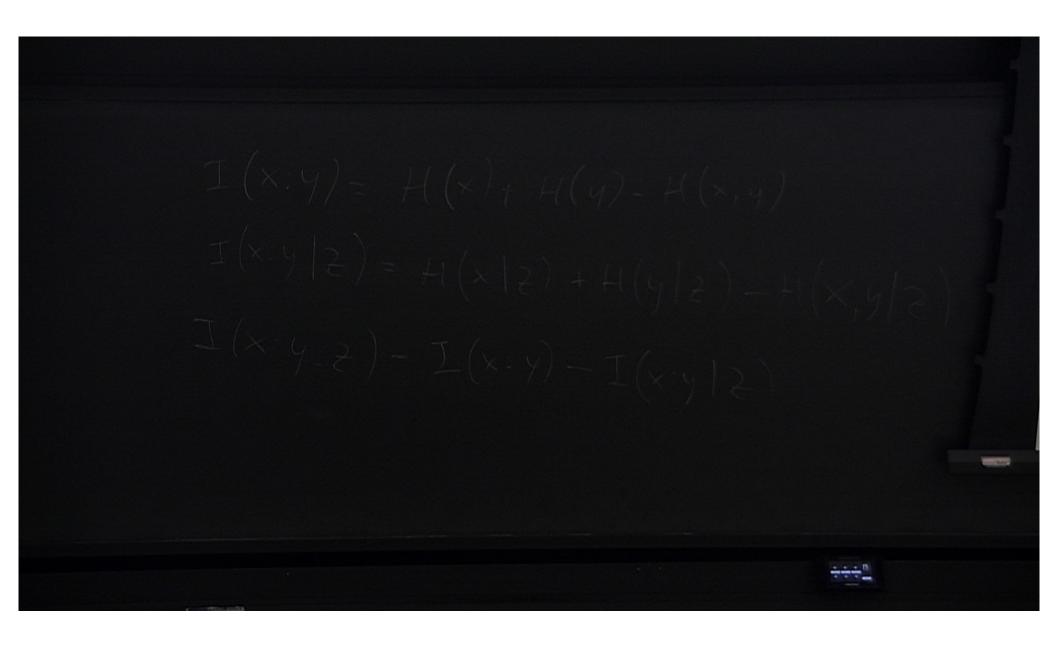
$$H(X,Y) \geq H(X|Y) + H(Y|X)$$

$$I(X:Y)\geq 0$$





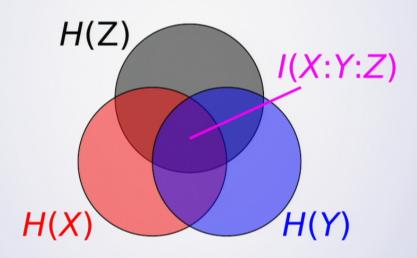
Pirsa: 16110030 Page 29/148



Pirsa: 16110030 Page 30/148

Problem:

I(X : Y : Z) is not in general a positive quantity. Equivalently, it is *not* true in general that $I(X : Y | Z) \le I(X : Y)$.



6 of 18

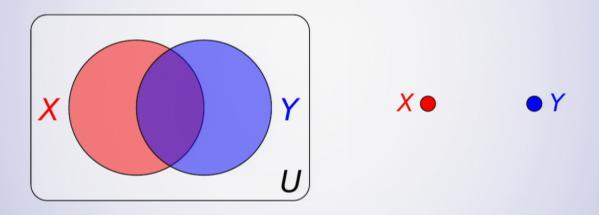
Pirsa: 16110030 Page 31/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.

7 of 18

Pirsa: 16110030 Page 32/148

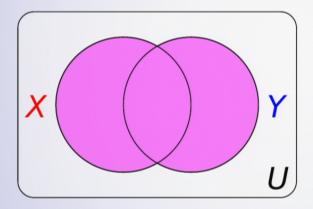
Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.

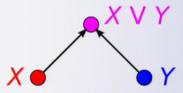


7 of 18

Pirsa: 16110030 Page 33/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.

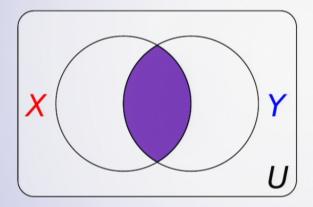


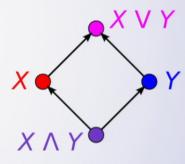


7 of 18

Pirsa: 16110030 Page 34/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.

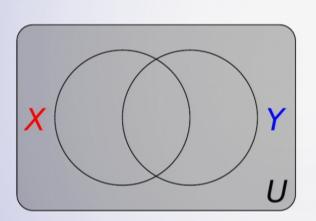


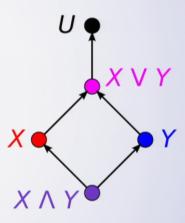


7 of 18

Pirsa: 16110030 Page 35/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.

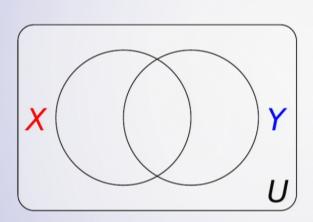


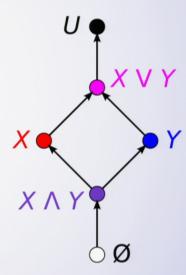


7 of 18

Pirsa: 16110030 Page 36/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.





7 of 18

Pirsa: 16110030 Page 37/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.

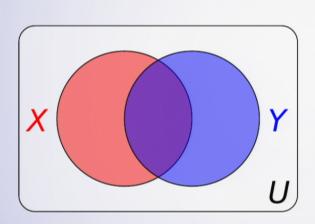
Definition:

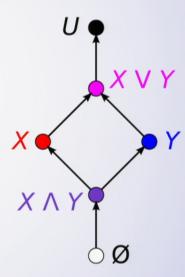
Let (U, Σ, μ) be a measure space. A *lattice of sets* in (U, Σ, μ) is a finite subset of Σ closed under union and intersection.

7 of 18

Pirsa: 16110030 Page 38/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.





7 of 18

Pirsa: 16110030 Page 39/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.

Definition:

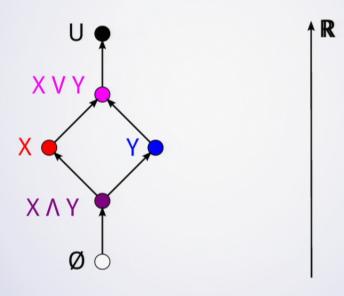
Let (U, Σ, μ) be a measure space. A *lattice of sets* in (U, Σ, μ) is a finite subset of Σ closed under union and intersection.

This way, the measure μ restricted to L is a monotone function.

7 of 18

Pirsa: 16110030 Page 40/148

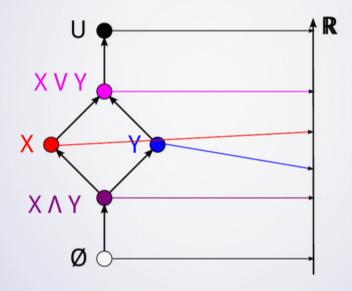
Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.



7 of 18

Pirsa: 16110030 Page 41/148

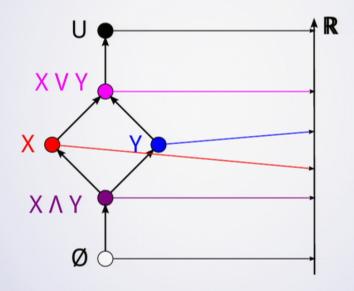
Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.



7 of 18

Pirsa: 16110030 Page 42/148

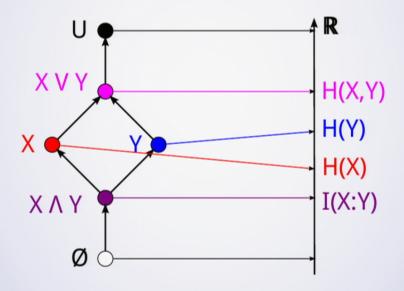
Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.



7 of 18

Pirsa: 16110030 Page 43/148

Given a set U, we take a finite set of subsets $L \subseteq P(U)$ closed under union and intersection.



7 of 18

Pirsa: 16110030 Page 44/148

Question:

Does information naturally form a lattice?

8 of 18

Pirsa: 16110030 Page 45/148

Question:

Does information naturally form a lattice?

Idea:

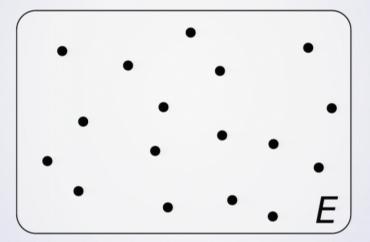
An observable Y is *more informative* than an observable X if it allows us to distinguish between more possible states.

8 of 18

Pirsa: 16110030 Page 46/148

Question:

Does information naturally form a lattice?

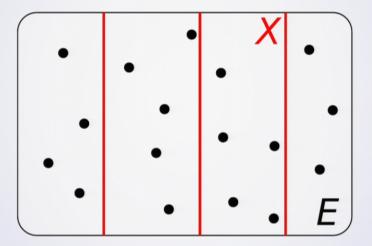


8 of 18

Pirsa: 16110030

Question:

Does information naturally form a lattice?

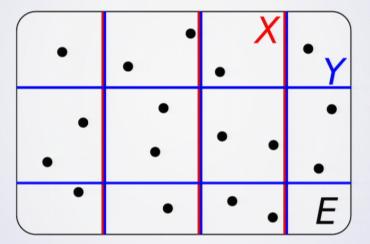


8 of 18

Pirsa: 16110030 Page 48/148

Question:

Does information naturally form a lattice?



8 of 18

Pirsa: 16110030 Page 49/148

Question:

Does information naturally form a lattice?

Idea (refined):

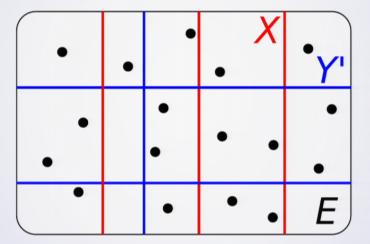
An observable Y is more informative than an observable X if it induces a finer partition on the outcome space.

8 of 18

Pirsa: 16110030 Page 50/148

Question:

Does information naturally form a lattice?



8 of 18

Pirsa: 16110030 Page 51/148

Question:

Does information naturally form a lattice?

Idea (refined):

An observable Y is more informative than an observable X if it induces a finer partition on the outcome space.

• The relation "more informative" forms only a partial order!

8 of 18

Pirsa: 16110030 Page 52/148

Question:

Does information naturally form a lattice?

Idea (refined):

An observable Y is more informative than an observable X if it induces a finer partition on the outcome space.

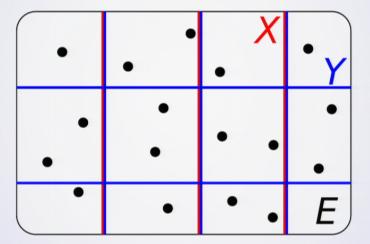
- The relation "more informative" forms only a partial order!
- This order relation does not depend on the sample distribution.

8 of 18

Pirsa: 16110030 Page 53/148

Question:

Does information naturally form a lattice?

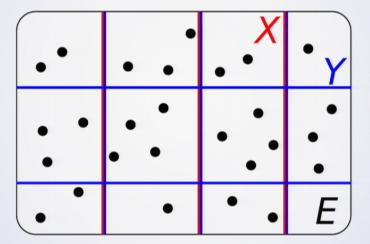


8 of 18

Pirsa: 16110030 Page 54/148

Question:

Does information naturally form a lattice?

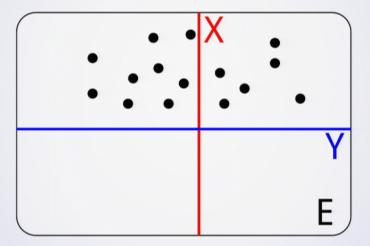


8 of 18

Pirsa: 16110030 Page 55/148

Question:

Does information naturally form a lattice?

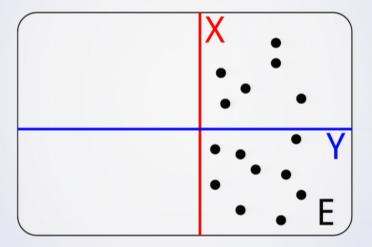


8 of 18

Pirsa: 16110030 Page 56/148

Question:

Does information naturally form a lattice?



8 of 18

Pirsa: 16110030 Page 57/148

Question:

Does information naturally form a lattice?

Idea (refined):

An observable Y is more informative than an observable X if it induces a finer partition on the outcome space.

- The relation "more informative" forms only a partial order!
- This order relation does not depend on the sample distribution.
- We will write in this case $Y \geq X$.

8 of 18

Pirsa: 16110030 Page 58/148

Definition (Li, Chong [3]):

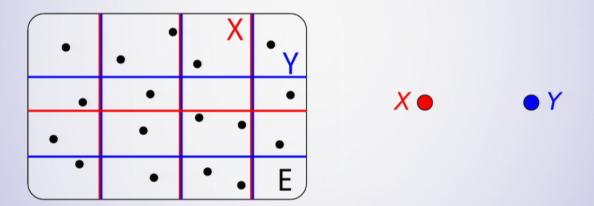
The *information lattice* of a set of observables X, Y, \ldots is the sublattice of the partition lattice of E generated by the partitions induced by X, Y, \ldots

9 of 18

Pirsa: 16110030 Page 59/148

Definition (Li, Chong [3]):

The *information lattice* of a set of observables X, Y, \ldots is the sublattice of the partition lattice of E generated by the partitions induced by X, Y, \ldots

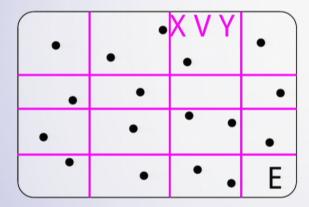


9 of 18

Pirsa: 16110030 Page 60/148

Definition (Li, Chong [3]):

The *information lattice* of a set of observables X, Y, \ldots is the sublattice of the partition lattice of E generated by the partitions induced by X, Y, \ldots

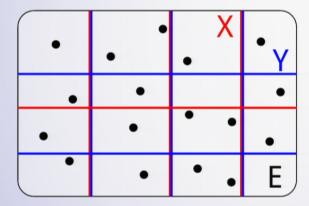


9 of 18

Pirsa: 16110030 Page 61/148

Definition (Li, Chong [3]):

The *information lattice* of a set of observables X, Y, \ldots is the sublattice of the partition lattice of E generated by the partitions induced by X, Y, \ldots



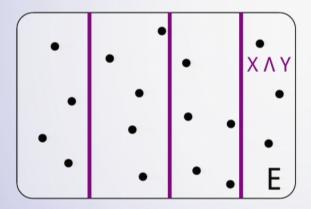


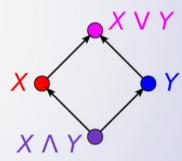
9 of 18

Pirsa: 16110030 Page 62/148

Definition (Li, Chong [3]):

The *information lattice* of a set of observables X, Y, \ldots is the sublattice of the partition lattice of E generated by the partitions induced by X, Y, \ldots



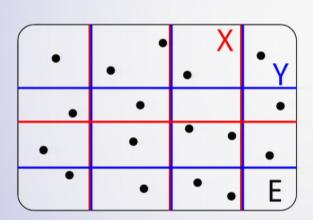


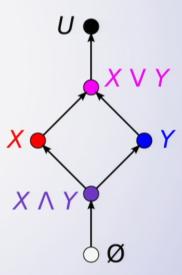
9 of 18

Pirsa: 16110030 Page 63/148

Definition (Li, Chong [3]):

The *information lattice* of a set of observables X, Y, \ldots is the sublattice of the partition lattice of E generated by the partitions induced by X, Y, \ldots





9 of 18

Pirsa: 16110030 Page 64/148

Question:

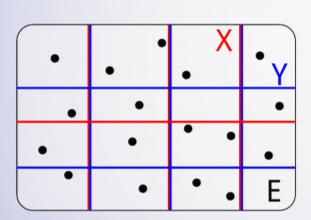
Does the information lattice have anything to do with entropy?

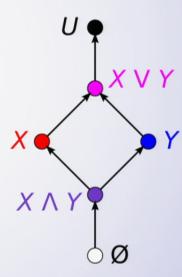
10 of 18

Pirsa: 16110030 Page 65/148

Definition (Li, Chong [3]):

The *information lattice* of a set of observables X, Y, \ldots is the sublattice of the partition lattice of E generated by the partitions induced by X, Y, \ldots





9 of 18

Pirsa: 16110030 Page 66/148

Question:

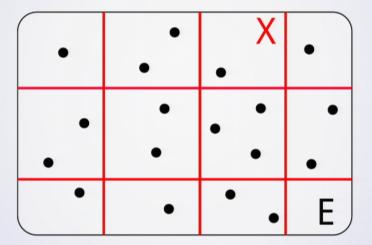
Does the information lattice have anything to do with entropy?

10 of 18

Pirsa: 16110030 Page 67/148

Question:

Does the information lattice have anything to do with entropy?

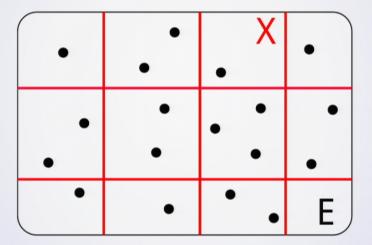


10 of 18

Pirsa: 16110030 Page 68/148

Question:

Does the information lattice have anything to do with entropy?

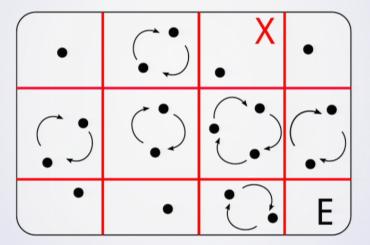


10 of 18

Pirsa: 16110030 Page 69/148

Question:

Does the information lattice have anything to do with entropy?



10 of 18

Pirsa: 16110030 Page 70/148

Question:

Does the information lattice have anything to do with entropy?

Definition:

The permutation group Aut(X) of a partition $p: E \to X$ is given by:

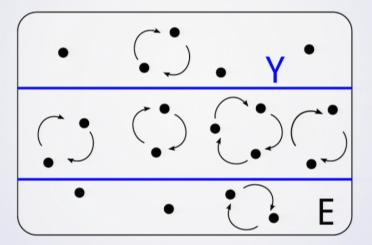
$$\operatorname{\mathsf{Aut}}(X) := \prod_{x \in X} \operatorname{\mathsf{Aut}}\left(p^{-1}(x)\right)$$

10 of 18

Pirsa: 16110030 Page 71/148

Question:

Does the information lattice have anything to do with entropy?

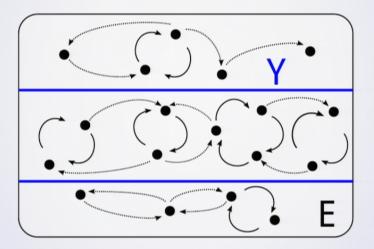


10 of 18

Pirsa: 16110030 Page 72/148

Question:

Does the information lattice have anything to do with entropy?



10 of 18

Pirsa: 16110030 Page 73/148

Question:

Does the information lattice have anything to do with entropy?

Definition:

The permutation group Aut(X) of a partition $p: E \to X$ is given by:

$$\operatorname{\mathsf{Aut}}(X) := \prod_{x \in X} \operatorname{\mathsf{Aut}}\left(p^{-1}(x)\right)$$

If $X \geq Y$, Aut(X) is a subgroup of Aut(Y).

10 of 18

Question:

Does the information lattice have anything to do with entropy?

• If $X \geq Y$, $Aut(X) \leq Aut(Y)$.

11 of 18

Pirsa: 16110030 Page 75/148

Question:

Does the information lattice have anything to do with entropy?

- If $X \geq Y$, $Aut(X) \leq Aut(Y)$.
- If \emptyset is the trivial partition (no divisions), for each X we have $\operatorname{Aut}(X) \leq \operatorname{Aut}(\emptyset)$.

11 of 18

Pirsa: 16110030 Page 76/148

Question:

Does the information lattice have anything to do with entropy?

- If $X \geq Y$, $Aut(X) \leq Aut(Y)$.
- If \emptyset is the trivial partition (no divisions), for each X we have $\operatorname{Aut}(X) \leq \operatorname{Aut}(\emptyset)$.
- Subgroups of $Aut(\emptyset)$ and inclusions form a lattice $S(Aut(\emptyset))$.
- The information lattice is isomorphic to the dual of a sublattice of S(Aut(Ø)).

11 of 18

Pirsa: 16110030 Page 77/148

Question:

Does the information lattice have anything to do with entropy?

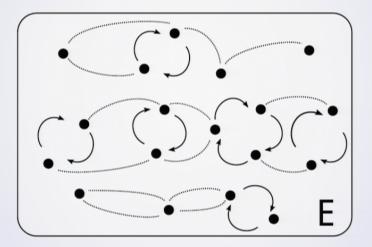
- If $X \geq Y$, $Aut(X) \leq Aut(Y)$.
- If \emptyset is the trivial partition (no divisions), for each X we have $\operatorname{Aut}(X) \leq \operatorname{Aut}(\emptyset)$.
- Subgroups of $Aut(\emptyset)$ and inclusions form a lattice $S(Aut(\emptyset))$.
- The information lattice is isomorphic to the dual of a sublattice of S(Aut(Ø)).
- We therefore take the lattice of quotients.

11 of 18

Pirsa: 16110030 Page 78/148

Question:

Does the information lattice have anything to do with entropy?

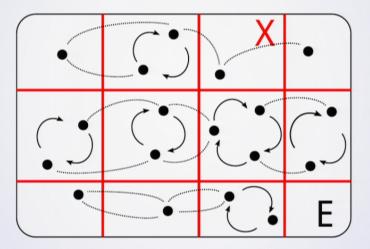


11 of 18

Pirsa: 16110030 Page 79/148

Question:

Does the information lattice have anything to do with entropy?

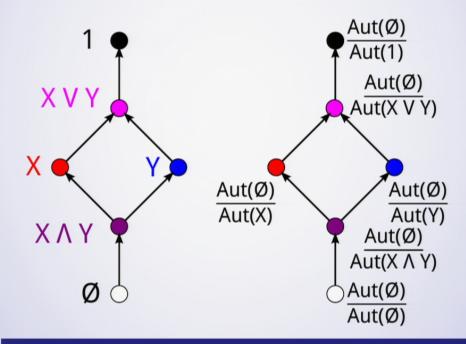


11 of 18

Pirsa: 16110030 Page 80/148

Question:

Does the information lattice have anything to do with entropy?

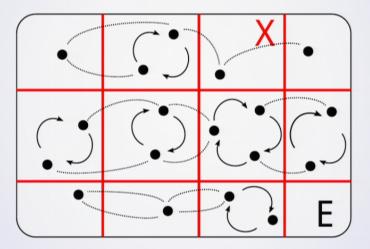


12 of 18

Pirsa: 16110030 Page 81/148

Question:

Does the information lattice have anything to do with entropy?

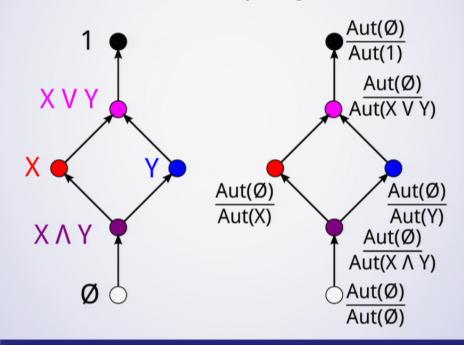


11 of 18

Pirsa: 16110030 Page 82/148

Question:

Does the information lattice have anything to do with entropy?

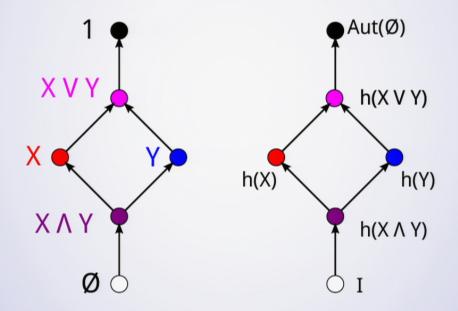


12 of 18

Pirsa: 16110030 Page 83/148

Question:

Does the information lattice have anything to do with entropy?

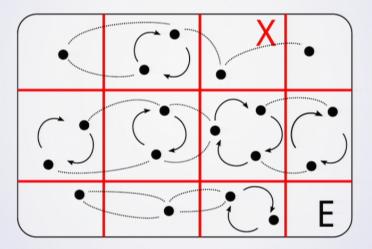


12 of 18

Pirsa: 16110030 Page 84/148

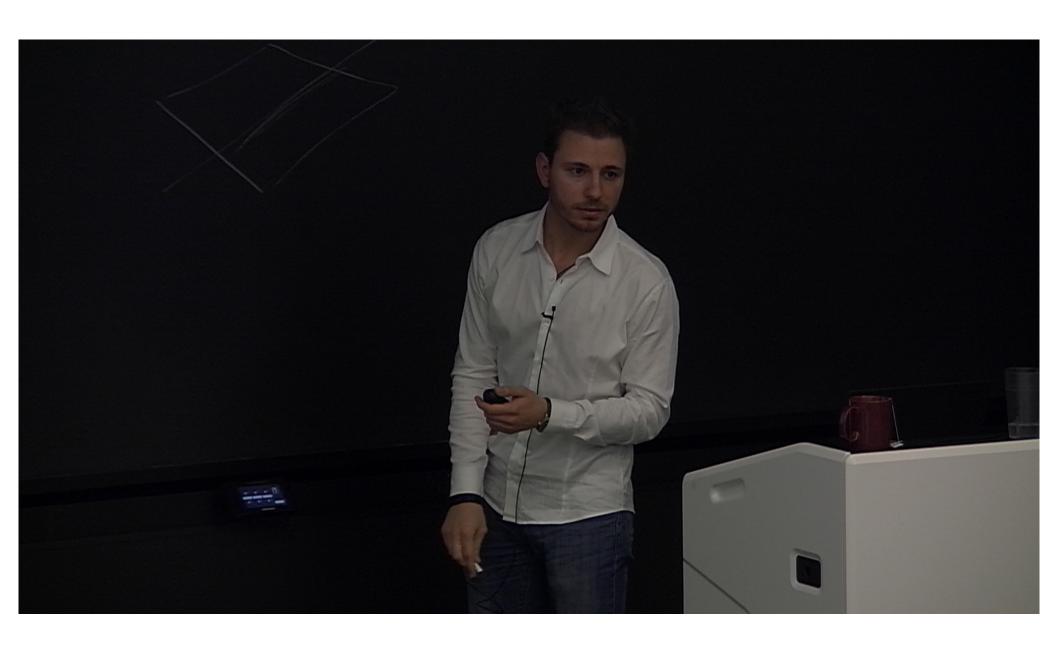
Question:

Does the information lattice have anything to do with entropy?



12 of 18

Pirsa: 16110030 Page 85/148

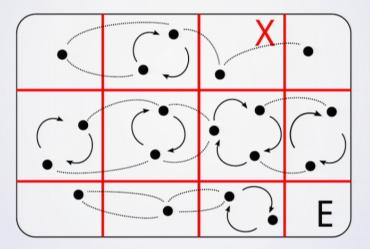


Pirsa: 16110030 Page 86/148

Pirsa: 16110030 Page 88/148

Question:

Does the information lattice have anything to do with entropy?



12 of 18

Pirsa: 16110030 Page 89/148

Question:

Does the information lattice have anything to do with entropy?

(Even if the elements of the lattice are sets, the lattice of quotients is not a lattice of sets as defined before, the join is not the union.)

Definition:

The coarse entropy of X is the log-cardinality of the quotient h(X):

$$H_c(X) := \log |h(X)| = \log \frac{|E|!}{\prod_{x \in X} |p^{-1}(x)|!}$$

This is a natural monotone function on the information lattice.

12 of 18

Question:

Does the information lattice have anything to do with entropy?

(Even if the elements of the lattice are sets, the lattice of quotients is not a lattice of sets as defined before, the join is not the union.)

Definition:

The coarse entropy of X is the log-cardinality of the quotient h(X):

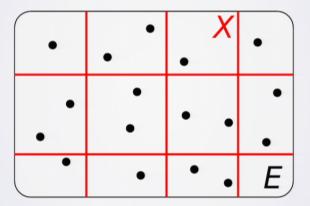
$$H_c(X) := \log |h(X)| = \log \frac{|E|!}{\prod_{x \in X} |p^{-1}(x)|!}$$

This is a natural monotone function on the information lattice.

12 of 18

Question:

Does the information lattice have anything to do with entropy?

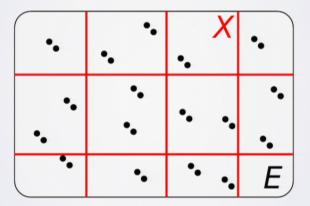


13 of 18

Pirsa: 16110030 Page 92/148

Question:

Does the information lattice have anything to do with entropy?

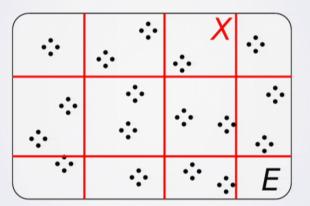


13 of 18

Pirsa: 16110030 Page 93/148

Question:

Does the information lattice have anything to do with entropy?



13 of 18

Pirsa: 16110030 Page 94/148

Question:

Does the information lattice have anything to do with entropy?

Stirling's approximation:

$$H_c(X) = \log \frac{|nE|!}{\prod_{x \in X} |np^{-1}(x)|!}$$

13 of 18

Pirsa: 16110030 Page 95/148

Question:

Does the information lattice have anything to do with entropy?

Stirling's approximation:

$$H_c(X) = \log \frac{|nE|!}{\prod_{x \in X} |np^{-1}(x)|!} \xrightarrow{n \to \infty} \log \frac{|E|^{|nE|}}{\prod_{x \in X} p_x^{np_x}}$$

13 of 18

Pirsa: 16110030 Page 96/148

Question:

Does the information lattice have anything to do with entropy?

Stirling's approximation:

$$H_c(X) = \log \frac{|nE|!}{\prod_{x \in X} |np^{-1}(x)|!} \xrightarrow{n \to \infty} \log \frac{|E|^{|nE|}}{\prod_{x \in X} p_x^{np_x}}$$
$$= -n \sum_{x \in X} p_x \log \frac{p_x}{|E|}$$

13 of 18

Pirsa: 16110030 Page 97/148

Question:

Does the information lattice have anything to do with entropy?

Stirling's approximation:

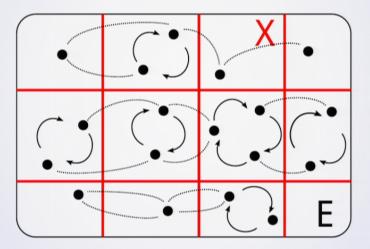
$$\lim_{n\to\infty}\frac{H_c(X)}{|E|}=H(X)$$

Up to the constant, the limit rate is the Shannon entropy of X.

13 of 18

Question:

Does the information lattice have anything to do with entropy?



13 of 18

Pirsa: 16110030 Page 99/148

Question:

Does the information lattice have anything to do with entropy?

Stirling's approximation:

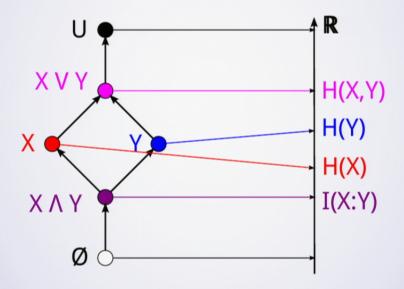
$$\lim_{n\to\infty}\frac{H_c(X)}{|E|}=H(X)$$

Up to the constant, the limit rate is the Shannon entropy of X. Shannon-type inequalities do not depend on the distribution. (Rigorous mathematical treatment in Chan [4] and Yeung [5].)

13 of 18

Question:

Does the information lattice have anything to do with entropy?



13 of 18

Pirsa: 16110030 Page 101/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

14 of 18

Pirsa: 16110030 Page 102/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

Remark:

A lattice of sets L satisfies the distributive law for every $x, y, z \in L$:

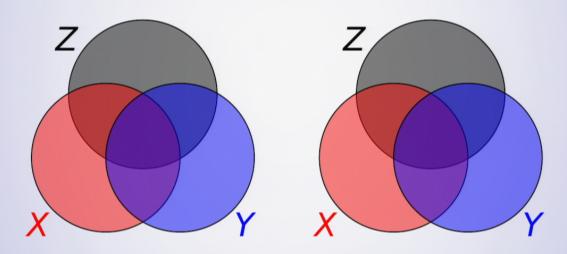
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

14 of 18

Pirsa: 16110030 Page 103/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

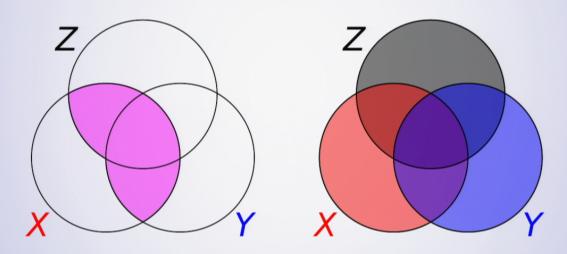


14 of 18

Pirsa: 16110030 Page 104/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

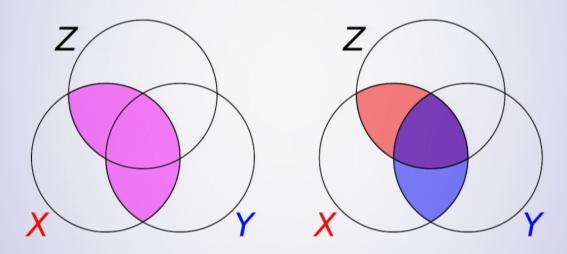


14 of 18

Pirsa: 16110030 Page 105/148

Question:

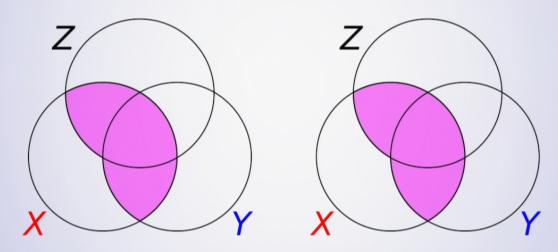
Is the information lattice always isomorphic to some lattice of sets?



14 of 18

Question:

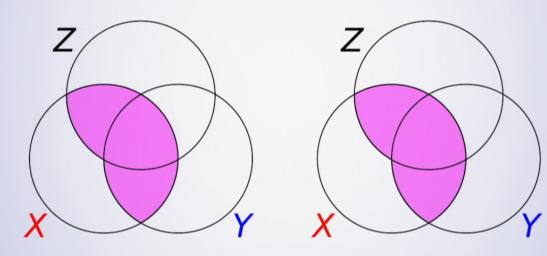
Is the information lattice always isomorphic to some lattice of sets?



14 of 18

Question:

Is the information lattice always isomorphic to some lattice of sets?



14 of 18

Question:

Is the information lattice always isomorphic to some lattice of sets?

Remark:

A lattice of sets L satisfies the distributive law for every $x, y, z \in L$:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

Theorem (Birkhoff):

A finite lattice is isomorphic to a lattice of sets if and only if it is distributive. (Sometimes called "representable lattice".)

14 of 18

Pirsa: 16110030 Page 109/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

15 of 18

Pirsa: 16110030 Page 110/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

Theorem (Pudlák-Tůma):

Every finite lattice can be embedded in a finite partition lattice.

15 of 18

Pirsa: 16110030 Page 111/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

Theorem (Pudlák-Tůma):

Every finite lattice can be embedded in a finite partition lattice.

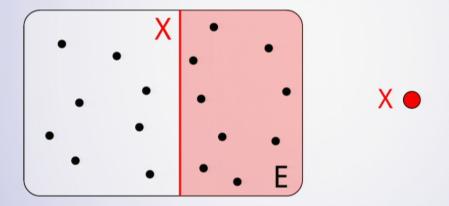
Since not every finite lattice is distributive, *some* sublattice of a partition lattice will not be representable.

15 of 18

Pirsa: 16110030 Page 112/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

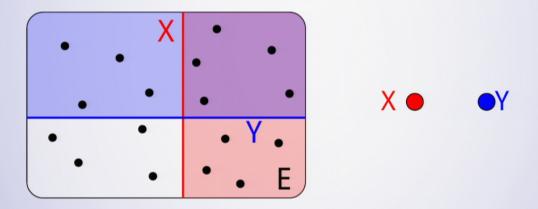


15 of 18

Pirsa: 16110030 Page 113/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

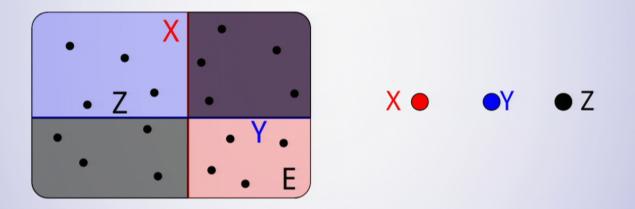


15 of 18

Pirsa: 16110030 Page 114/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

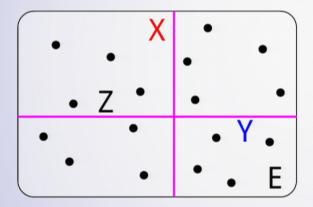


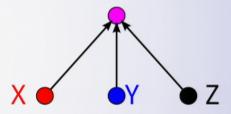
15 of 18

Pirsa: 16110030 Page 115/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

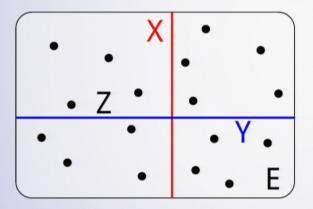


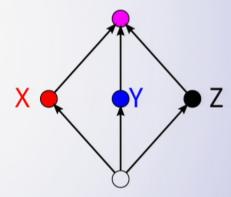


15 of 18

Question:

Is the information lattice always isomorphic to some lattice of sets?

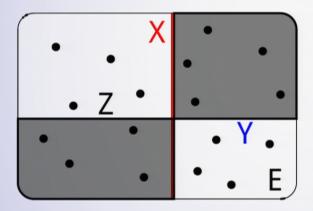


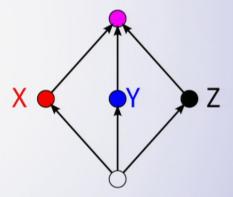


15 of 18

Question:

Is the information lattice always isomorphic to some lattice of sets?

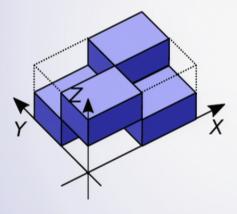


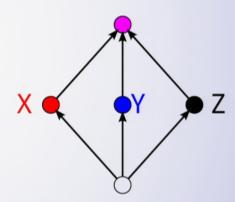


15 of 18

Question:

Is the information lattice always isomorphic to some lattice of sets?

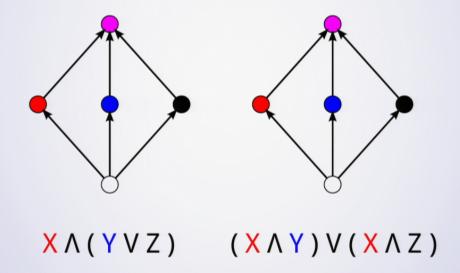




15 of 18

Question:

Is the information lattice always isomorphic to some lattice of sets?

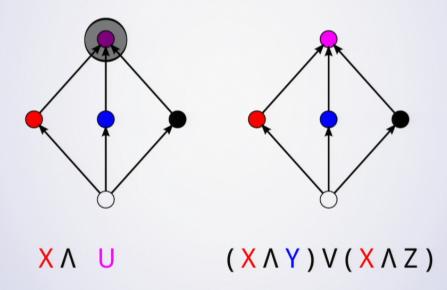


15 of 18

Pirsa: 16110030 Page 120/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

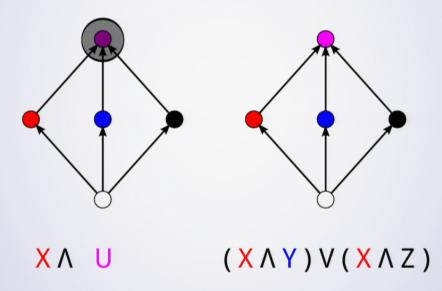


15 of 18

Pirsa: 16110030 Page 121/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

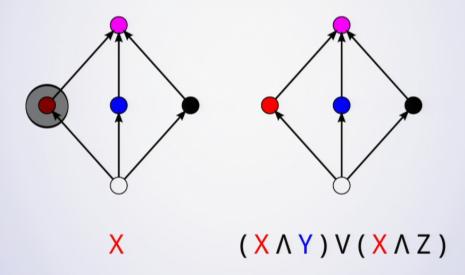


15 of 18

Pirsa: 16110030 Page 122/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

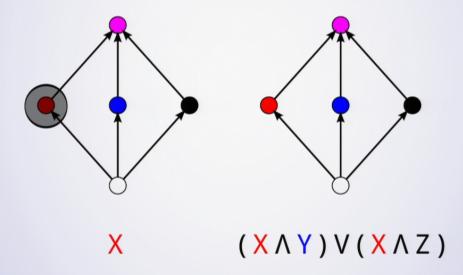


15 of 18

Pirsa: 16110030 Page 123/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

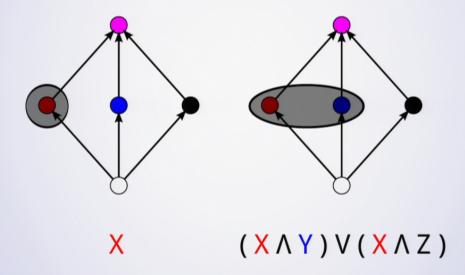


15 of 18

Pirsa: 16110030 Page 124/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

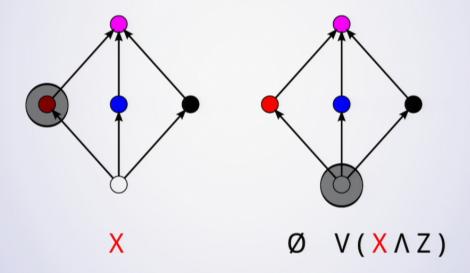


15 of 18

Pirsa: 16110030 Page 125/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

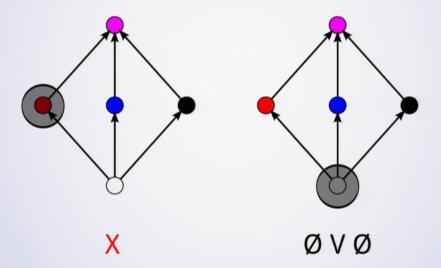


15 of 18

Pirsa: 16110030 Page 126/148

Question:

Is the information lattice always isomorphic to some lattice of sets?

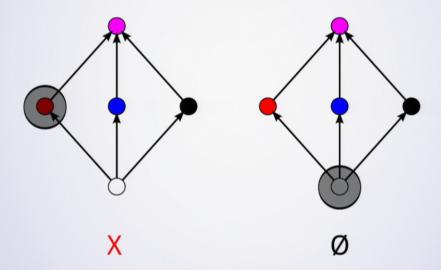


15 of 18

Pirsa: 16110030 Page 127/148

Question:

Is the information lattice always isomorphic to some lattice of sets?



15 of 18

- The information of *N* observables forms naturally a lattice, as a sublattice of partitions of the outcome space.
- Entropy is a monotone function on the information lattice, obtained from permutations in the large numbers limit.
- The information lattice is not distributive for N > 2.
- Therefore, Shannon-type inequalities can be represented faithfully with Venn diagrams only for $N \leq 2$ random variables.

16 of 18

Pirsa: 16110030 Page 129/148

- The information of N observables forms naturally a lattice, as a sublattice of partitions of the outcome space.
- Entropy is a monotone function on the information lattice, obtained from permutations in the large numbers limit.
- The information lattice is not distributive for N > 2.
- Therefore, Shannon-type inequalities can be represented faithfully with Venn diagrams only for $N \leq 2$ random variables.

Inf. Lattice

Shannon Ineqs

Venn Diagrams

16 of 18

Pirsa: 16110030 Page 130/148

- The information of *N* observables forms naturally a lattice, as a sublattice of partitions of the outcome space.
- Entropy is a monotone function on the information lattice, obtained from permutations in the large numbers limit.
- The information lattice is not distributive for N > 2.
- Therefore, Shannon-type inequalities can be represented faithfully with Venn diagrams only for $N \leq 2$ random variables.

Inf. Lattice Shannon Ineqs

Venn Diagrams

16 of 18

Pirsa: 16110030 Page 131/148

- The information of *N* observables forms naturally a lattice, as a sublattice of partitions of the outcome space.
- Entropy is a monotone function on the information lattice, obtained from permutations in the large numbers limit.
- The information lattice is not distributive for N > 2.
- Therefore, Shannon-type inequalities can be represented faithfully with Venn diagrams only for $N \leq 2$ random variables.

16 of 18

Pirsa: 16110030 Page 132/148

- The information of *N* observables forms naturally a lattice, as a sublattice of partitions of the outcome space.
- Entropy is a monotone function on the information lattice, obtained from permutations in the large numbers limit.
- The information lattice is not distributive for N > 2.
- Therefore, Shannon-type inequalities can be represented faithfully with Venn diagrams only for $N \leq 2$ random variables.

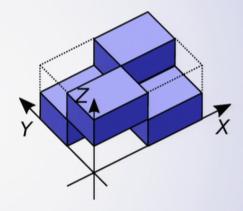
16 of 18

Pirsa: 16110030 Page 133/148

Further Questions

• Synergy and M_3 : do they imply one another?





• More in general, is synergy linked to non-distributivity?

17 of 18

Pirsa: 16110030 Page 134/148

References

Elad Schneidmann, William Bialek, and Michael J. II Berry.

Synergy, Redundancy, and Independence in Population Codes.

The Journal of Neuroscience, 17, 2003.

Paul L. Williams and Randall D. Beer.

Nonnegative Decomposition of Multivariate Information.

arXiv:1004.2151, 2010.

Hua Li and Edwin K. P. Chong.

On a Connection between Information and Group Lattices.

Entropy, 13:683-708, 2011.

T. H. Chan.

Balanced information inequalities.

IEEE Transactions on Information Theory,
IT-49:3261–3267, 2003.

R. W. Yeung.

Information Theory and Network Coding. Springer, 2008.

J. C. Baez, T. Fritz, and T. Leinster.

A Characterization of Entropy in Terms of Information Loss.

Entropy, 13(11):1945-1957, 2011.

B. Fong.

Causal Theories: A Categorical Perspective on Bayesian Networks.

Master's thesis, University of Oxford, 2012. Available on arXiv:1301.6201v1.

M. Gromov.

Symmetry, Probability, Entropy: Synopsis of the Lecture at MAXENT 2014.

Entropy, 17(3):1273-1277, 2015.

M. Gromov.

In a Search for a Structure, Part 1: On Entropy. Preprint available at http://www.ihes.fr/gromov, 2012.

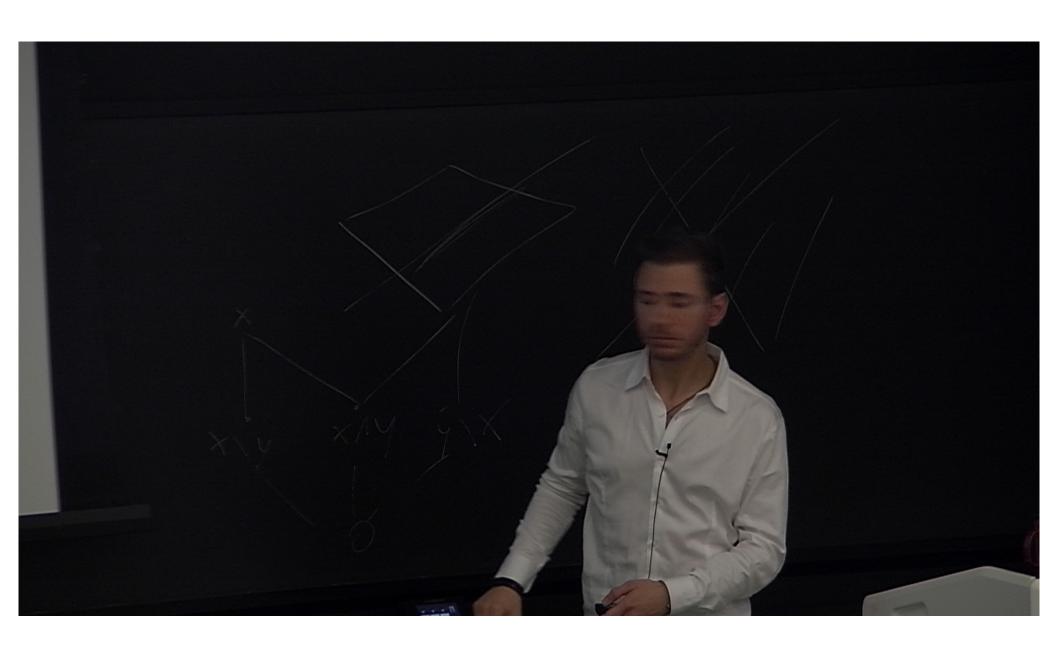
Pavel Pudlák and Jiří Tůma.

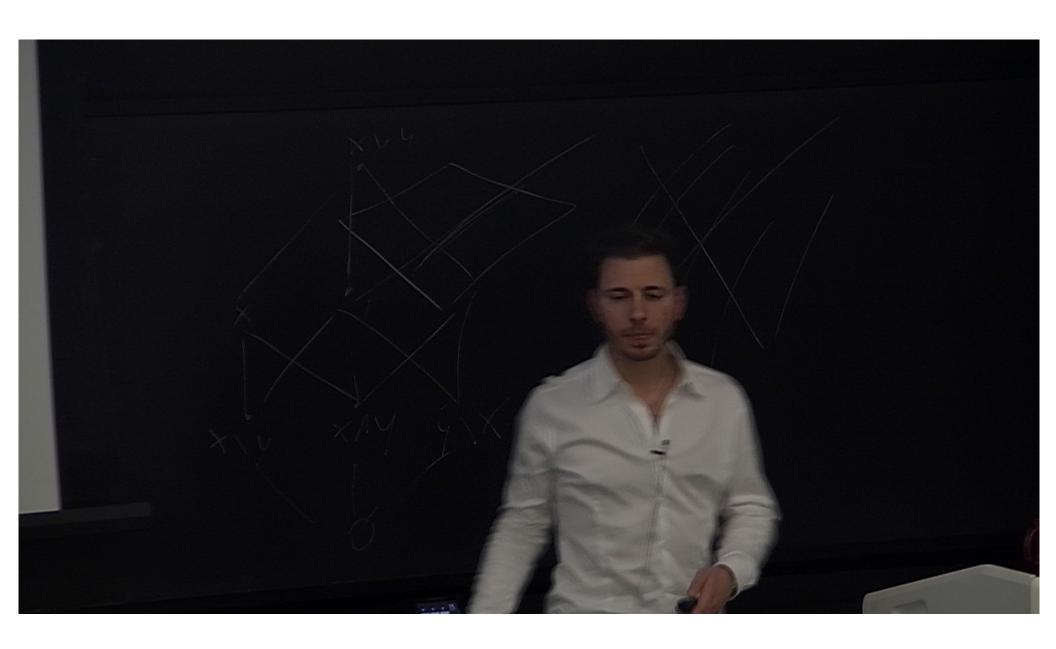
Every finite lattice can be embedded in a finite partition lattice.

Algebra Universalis, 10(1):74-95, 1980.

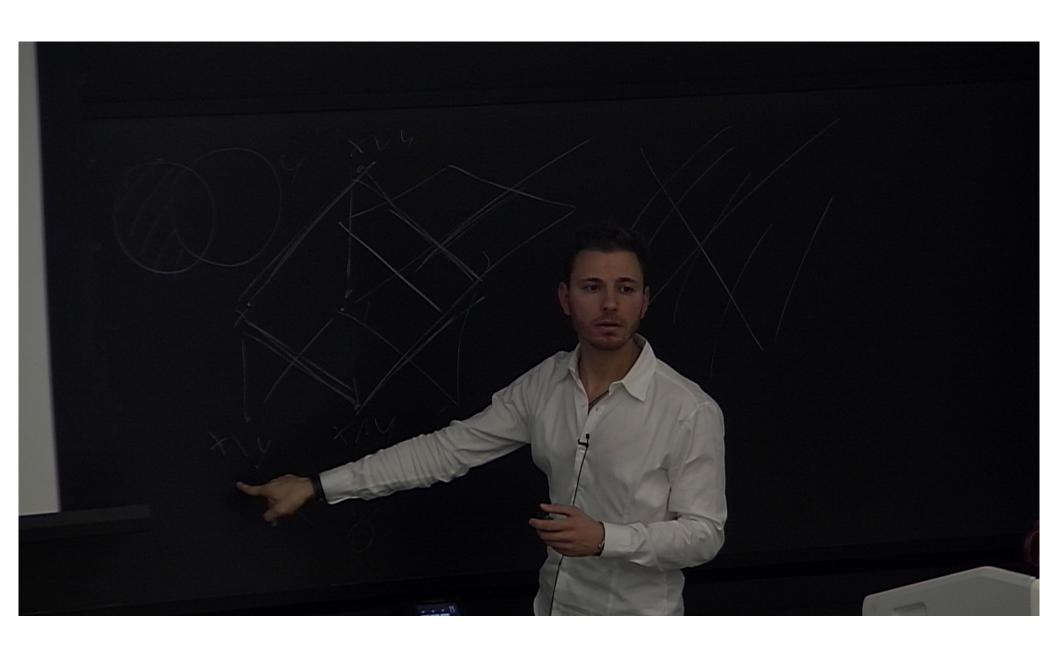
18 of 18

Pirsa: 16110030 Page 135/148



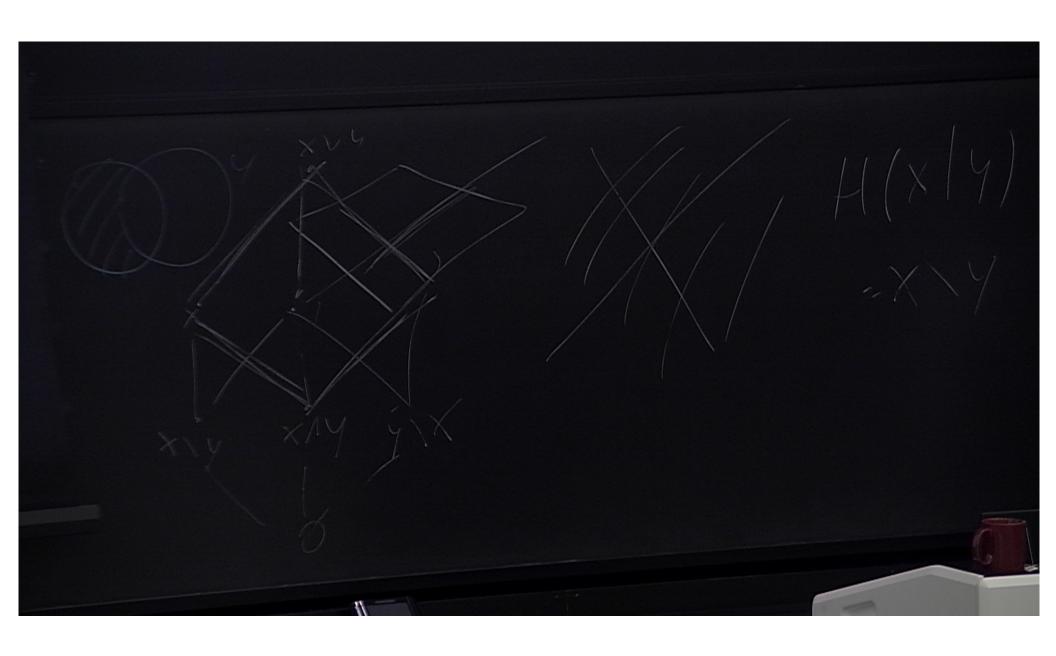


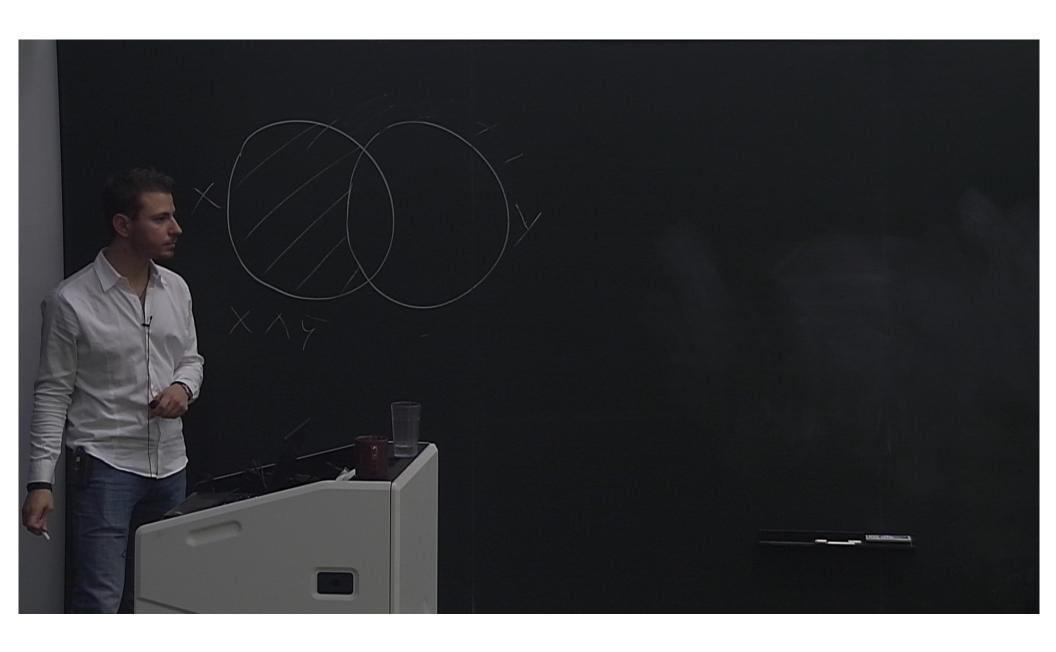
Pirsa: 16110030 Page 139/148



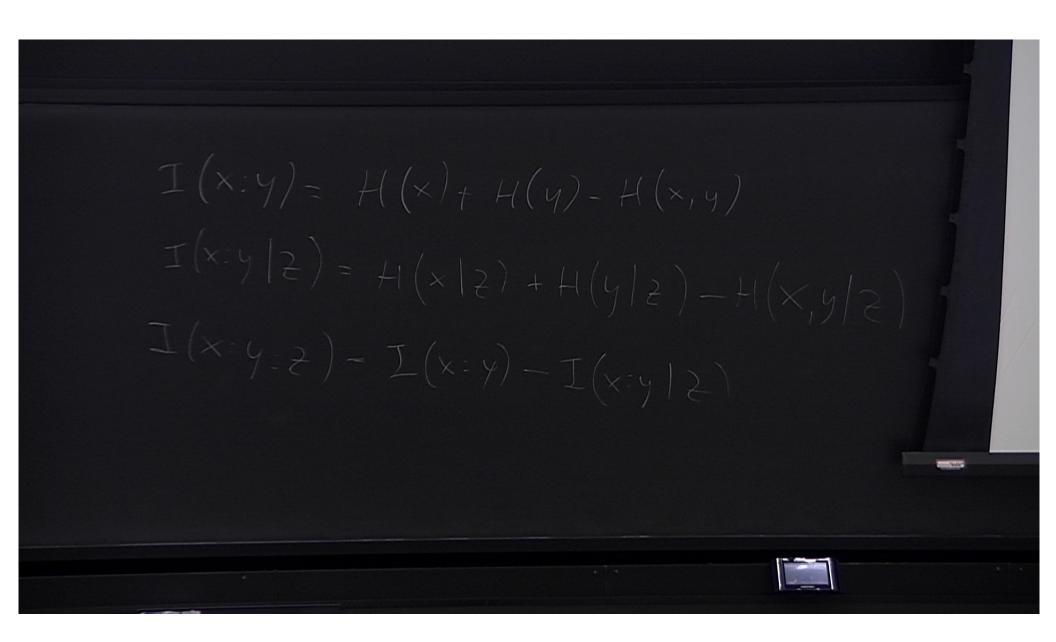


Pirsa: 16110030 Page 142/148



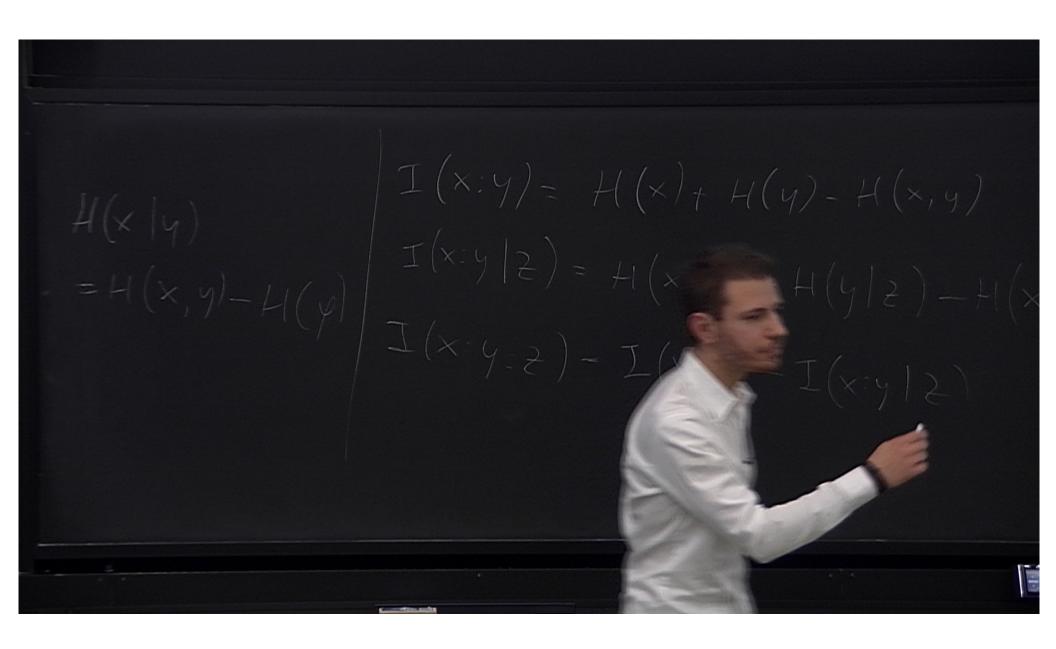


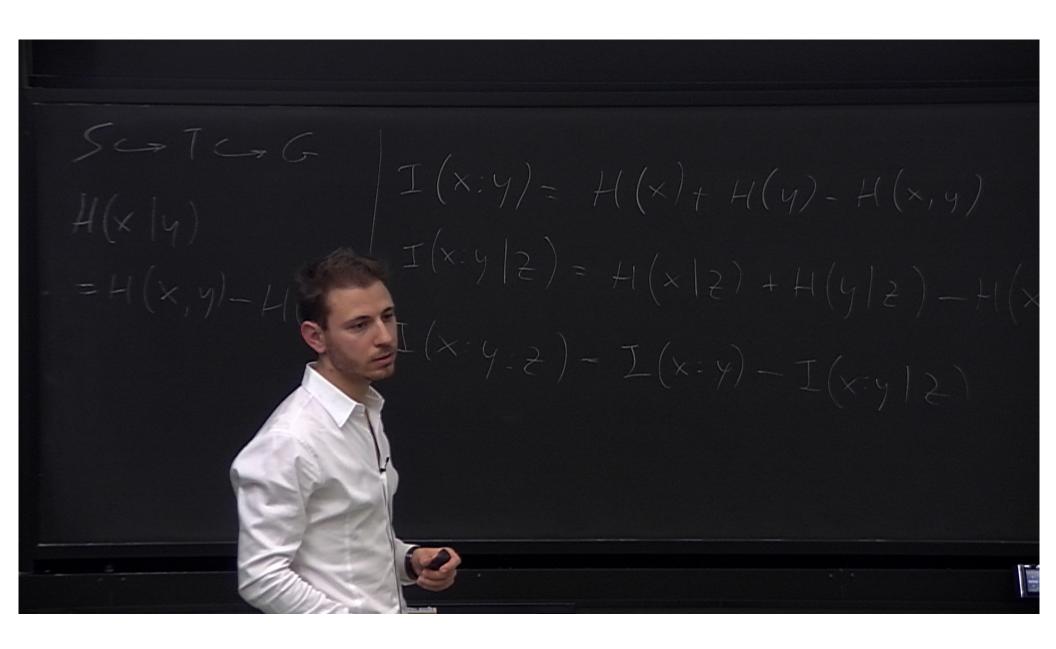
Pirsa: 16110030 Page 144/148



Pirsa: 16110030 Page 145/148

Pirsa: 16110030 Page 146/148





Pirsa: 16110030 Page 148/148