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Abstract: <p>Can we decompose the information of a composite system into terms arising from its parts and their interactions?<br>

For abipartite system (X,Y), the joint entropy can be written as an algebraic sum of three terms: the entropy of X aone, the entropy of Y alone, and
the mutual information of X and Y, which comes with an opposite sign. This suggests a set-theoretical analogy: mutual information is a sort of
"intersection”, and joint entropy is a sort of "union".<br>

The same picture cannot be generalized to three or more parts in a straightforward way, and the problem is still considered open. Is there a deep
reason for why the set-theoretical analogy fails?<br>

Category theory can give an aternative, conceptual point of view on the problem. As Shannon already noted, information appears to be related to
symmetry. This suggests a natural lattice structure for information, which is compatible with a set-theoretical picture only for bipartite systems.<br>
The categorical approach favors objects with a structure in place of just numbers to describe information quantities. We hope that this can clarify the
mathematical structure underlying information theory, and leave it open to wider generalizations.</p>
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Information Decomposition

Question:
How much do parts of a system contribute to the total information?
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Information Decomposition

Question:
How much do parts of a system contribute to the total information?

Statistics Game Theory Biological Networks

Nonlinear higher Information in games  Quantify complexity
order correlations Blackwell's theorem of neural networks.
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Information Decomposition

Question:
How much do parts of a system contribute to the total information?

“The totality is not [...] a mere
heap, but the whole is something
besides the parts.”

— Aristotle, Metaphysics VIl
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Information Decomposition

Question:
How much do parts of a system contribute to the total information?

e Shannon entropy:
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Information Decomposition

Question:
How much do parts of a system contribute to the total information?

e Shannon entropy:

— ) p(x)log p(x)

xeX

In the example, H(X) = 1 bit.
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Information Decomposition

Question:
How much do parts of a system contribute to the total information?

e Joint entropy:

H(X,Y) ==Y p(x,y)logp(x, )

X,y

In the example, H(X, Y) = 2 bits.
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Information Decomposition

Question:
How much do parts of a system contribute to the total information?

e Conditional entropy:

H(XIY) == p(x,y) log p(x|y)

In the example, H(X|Y) = 0 bit.
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Information Decomposition

|dea:
“The whole is greater than the sum of its parts.”
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Information Decomposition
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|dea:
“The whole is greater than the sum of its parts.”

H(X,Y) < H(X) + H(Y) H(X)

H(X,Y) > H(X|Y) + H(Y|X)

B Y) > O’ 2o L) XX

Page 16/148



Information Decomposition

|dea:
“The whole is greater than the sum of its parts.”

H(X,Y) < H(X) + H(Y)

H(X,Y) > H(X|Y) + H(Y|X)

I(X:Y)>0]
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Information Decomposition

Set-theoretical picture:

“Statistical interactions are like intersections.”
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Information Decomposition

Problem:
I(X :Y:Z)is not in general a positive quantity.

Pirsa: 16110030 Page 23/148



Information Decomposition

Problem:
[(X :Y :Z)is not in general a positive quantity.
Equivalently, it is not true in general that /(X : Y |Z) < I(X : Y).

Pirsa: 16110030 Page 24/148



Information Decomposition

Problem:
I(X :Y:Z)is not in general a positive quantity.
Equivalently, it is not true in general that /(X : Y |Z) < (X : Y).

e For example, if X =Y & Z:
I(X:Y]I="

I(X:Y|Z)=1
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Information Decomposition

Problem:
I(X :Y:Z)is not in general a positive quantity.
Equivalently, it is not true in general that /(X : Y |Z) < I(X : Y).

e For example, if X = ¥ =%
I(X: YIi=H

I(X:Y|Z)=0
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Information Decomposition

Problem:
I(X :Y :Z)is not in general a positive quantity.
Equivalently, it is not true in general that /(X : Y |Z) < I(X : Y).

e For example, if X =Y = Z:
I(X: Y=

I(X:Y|Z)=0

Schneidmann, Bialek, Berry [1] and Williams, Beer [2].
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Information Decomposition

|dea:
“The whole is greater than the sum of its parts.”

H(X,Y) < H(X) +

H(X,Y) > H(X|Y) + H(Y|X) @
H(X|Y) H(Y|X)

I(X:Y)>
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Information Decomposition

Problem:
[(X :Y :Z)is not in general a positive quantity.
Equivalently, it is not true in general that /(X : Y |Z) < (X : Y).

H(Z)

[(X:Y:Z)
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Lattices of Sets

Given a set U, we take a finite set of subsets L C P(U) closed under
union and intersection.
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Lattices of Sets

Given a set U, we take a finite set of subsets L C P(U) closed under
union and intersection.

Definition:
Let (U, X, 1) be a measure space. A lattice of sets in (U, X, i) is a

finite subset of ¥ closed under union and intersection.
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Lattices of Sets

Given a set U, we take a finite set of subsets L C P(U) closed under
union and intersection.

Definition:
Let (U, X, 1) be a measure space. A lattice of sets in (U, X, i) is a

finite subset of ¥ closed under union and intersection.

This way, the measure p restricted to L is a monotone function.
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Information Lattice

Question:
Does information naturally form a lattice?
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Information Lattice

Question:
Does information naturally form a lattice?

|dea:
An observable Y is more informative than an observable X if it allows
us to distinguish between more possible states.
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Information Lattice

Question:
Does information naturally form a lattice?

Idea (refined):

An observable Y is more informative than an observable X if it
induces a finer partition on the outcome space.
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Question:
Does information naturally form a lattice?

Idea (refined):

An observable Y is more informative than an observable X if it
induces a finer partition on the outcome space.

® The relation “more informative” forms only a partial order!
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Question:
Does information naturally form a lattice?

Idea (refined):

An observable Y is more informative than an observable X if it
induces a finer partition on the outcome space.

e The relation “more informative” forms only a partial order!

e This order relation does not depend on the sample distribution.
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Information Lattice

Question:
Does information naturally form a lattice?

Idea (refined):

An observable Y is more informative than an observable X if it
induces a finer partition on the outcome space.

e The relation “more informative” forms only a partial order!

e This order relation does not depend on the sample distribution.

e \We will write in this case Y > X.
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Information Lattice

Definition (Li, Chong [3]):

The information lattice of a set of observables X, Y,... is the
sublattice of the partition lattice of E generated by the partitions
induced by X,Y,....
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Definition:

The permutation group Aut(X) of a partition p: E — X is given by:

Aut(X) = H Aut (p~*(x))

xeX
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Pirsa: 16110030 Page 72/148



Pirsa: 16110030

Information Lattice

Question:

Does the information lattice have anything to do with entropy?
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Definition:
The permutation group Aut(X) of a partition p: E — X is given by:

Aut(X) := H Aut (p~1(x))

xeX

If X > Y, Aut(X) is a subgroup of Aut(Y).
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

o If X > Y, Aut(X) < Aut(Y).

Pirsa: 16110030 Page 75/148



Information Lattice

Question:
Does the information lattice have anything to do with entropy?

o If X >V, Aut(X) < Aut(Y).

e If () is the trivial partition (no divisions), for each X we have
Aut(X) < Aut(0).
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

If X > Y, Aut(X) < Aut(Y).

If () is the trivial partition (no divisions), for each X we have
Aut(X) < Aut(0).

Subgroups of Aut(()) and inclusions form a lattice S(Aut()).

The information lattice is isomorphic to the dual of a sublattice of

S(Aut(0)).
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

If X > Y, Aut(X) < Aut(Y).

If () is the trivial partition (no divisions), for each X we have
Aut(X) < Aut(0).

Subgroups of Aut(()) and inclusions form a lattice S(Aut(()).

The information lattice is isomorphic to the dual of a sublattice of
S(Aut(0)).

We therefore take the lattice of quotients.
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Question:
Does the information lattice have anything to do with entropy?
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Aut(Q)

h(XV'Y)
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

(Even if the elements of the lattice are sets, the lattice of quotients is
not a lattice of sets as defined before, the join is not the union.)

Definition:
The coarse entropy of X is the log-cardinality of the quotient h(X):

E]!
erx |P71(X)|!

This is a natural monotone function on the information lattice.

Hc(X) := log |h(X)| = log
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Stirling’s approximation:

|nE|!
[Teex [mp~(x)]!

Hc(X) = log
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Stirling’s approximation:

o |nE|!
[Teex [mp~(x)]!

Px
e P Z px log E
x€eX

HC(X) &
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Stirling’s approximation:

Up to the constant, the limit rate is the Shannon entropy of X.
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

Stirling’s approximation:

Up to the constant, the limit rate is the Shannon entropy of X.
Shannon-type inequalities do not depend on the distribution.
(Rigorous mathematical treatment in Chan [4] and Yeung [5].)

13 of 18
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Information Lattice

Question:
Does the information lattice have anything to do with entropy?

A
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Representability

Question:
Is the information lattice always isomorphic to some lattice of sets?
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Representability

Question:
Is the information lattice always isomorphic to some lattice of sets?

Remark:
A lattice of sets L satisfies the distributive law for every x, y,z € L:

eV z)=(xAy)VIxia
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Representability

Question:
Is the information lattice always isomorphic to some lattice of sets?
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Representability

Question:
Is the information lattice always isomorphic to some lattice of sets?

Remark:
A lattice of sets L satisfies the distributive law for every x, y,z € L:

Ry z)=(xAy)VixAaZ

Theorem (Birkhoff):

A finite lattice is isomorphic to a lattice of sets if and only if it is
distributive. (Sometimes called “representable lattice”.)
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Representability

Question:
Is the information lattice always isomorphic to some lattice of sets?
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Representability

Question:
Is the information lattice always isomorphic to some lattice of sets?

Theorem (Pudlak-Tima):
Every finite lattice can be embedded in a finite partition lattice.
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Representability

Question:
Is the information lattice always isomorphic to some lattice of sets?

Theorem (Pudlak-Tima):

Every finite lattice can be embedded in a finite partition lattice.

Since not every finite lattice is distributive, some sublattice of a
partition lattice will not be representable.
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Conclusion

The information of N observables forms naturally a lattice, as a
sublattice of partitions of the outcome space.

Entropy is a monotone function on the information lattice,
obtained from permutations in the large numbers limit.

The information lattice is not distributive for N > 2.

Therefore, Shannon-type inequalities can be represented faithfully
with Venn diagrams only for N < 2 random variables.
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Conclusion

The information of N observables forms naturally a lattice, as a
sublattice of partitions of the outcome space.

Entropy is a monotone function on the information lattice,
obtained from permutations in the large numbers limit.

The information lattice is not distributive for N > 2.

Therefore, Shannon-type inequalities can be represented faithfully
with Venn diagrams only for N < 2 random variables.

Inf. Lattice

Shannon Inegs ' > Venn Diagrams
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Further Questions

e Synergy and M3: do they imply one another?

e More in general, is synergy linked to non-distributivity?
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