Title: Prospects for cosmological collider physics

Date: Oct 25, 2016 11:00 AM

URL: http://pirsa.org/16100068

Abstract: If heavy fields are present during inflation, they can leave an imprint in late-time cosmological observables. The main signature of these fields is a small amount of distinctly shaped non-Gaussianity, which if detected, would provide a wealth of information about the particle spectrum of the inflationary Universe. Here we investigate to what extent these signatures can be detected or constrained using futuristic 21-cm surveys. This part of my talk is based on 1610.06559. In the second part of my talk I will discuss how non-adiabatic production of heavy particles, as recently studied in 1606.00513, can generate an interesting and so far unconstrained class of non-Gaussianity in the CMB.

Pirsa: 16100068 Page 1/40

# Prospects for cosmological collider physics

Moritz Münchmeyer, Perimeter Institute

-

Pirsa: 16100068 Page 2/40

## From inflation interactions to cosmology

We assume that the primordial density fluctuations are created during inflation.

Primordial non-gaussianities are a measure of interactions during inflation.



$$\mathcal{L}_{\mathrm{infl}}(\Phi,g_{\mu\nu},..)$$
 Step 1  $\zeta(\mathbf{x}, au_0)$  Step 2  $LSS$   $T_{\mathrm{CMB}}$   $21cm$ 

Primordial curvature perturbations

QFT correlators in the sky (in principle)!!!

2

Pirsa: 16100068

## Bispectrum basics

Here we are mostly interested in the 3-point function (bispectrum) of curvature perturbations

$$\langle \zeta(\mathbf{k_1})\zeta(\mathbf{k_2})\zeta(\mathbf{k_3})\rangle = (2\pi)^3 \delta(\mathbf{k_{1,2,3}})B(k_1, k_2, k_3)$$

We also define the bispectrum "shape function"

$$S(k_1, k_2, k_3) = \frac{1}{N} (k_1 k_2 k_3)^2 B(k_1, k_2, k_3)$$

Statistical isotropy and homogeneity forces k1,k2,k3 to form a triangle.

equilateral triangles

squeezed triangles







"local non-Gaussianity"

So far, all primordial bispectrum searches are consistent with zero.

## **COSMOLOGICAL COLLIDER PHYSICS**

Based on 1610.06559 with Daan Meerburg, Julian Munoz, Xingang Chen

1

Pirsa: 16100068 Page 5/40

## **Energy scales**

Inflation is the highest energy particle collider (indirectly) available to us, probably forever. 

We need to read off the results as precisely as possible.



Pirsa: 16100068 Page 6/40

### **Theoretical Motivation**

The inflationary particle collider in principle probes several orders of magnitude in energy from m\_inflation to > H.

**String theory models strongly suggest many fields.** Single field inflation is not natural in this sense.

**Supersymmetry at order H** to partially protect the slow roll potential suggests super-partners in this energy range.



Pirsa: 16100068 Page 7/40

## Two example processes

**Derivative 3pt vertex: Arkani-Hamed, Maldacena 2015** 

$$\lambda(\nabla\phi)^2\sigma \qquad \phi \longrightarrow \phi \longrightarrow \phi$$

Bilinear term mediates large self-interactions of  $\sigma$  (quasi single field inflation,

Chen/Wang 2010).



More generally: all diagrams from cubic coupling and bilinear mixing term.

 $\neg$ 

## Primordial bispectrum for AHM model

Basis: 2<sup>nd</sup> order in-in perturbation theory



Contains double integrals over Hankel functions, e.g.

$$\int_{-\infty}^{0} dx \, x^{(3/2)} e^{\alpha x} H_{i\mu}^{(1)}(ix) \int_{-\infty}^{x} dy \, y^{(-1/2)} e^{y} H_{i\mu}^{(2)}(iy)$$

(use Wick rotation for numerical convergence (Chen/Wang 2015))





Mass parameter

$$\mu = \sqrt{\frac{m^2}{H^2} - \frac{9}{4}}$$



## Model independent squeezed limit

#### Basic physical reason for squeezed limit behavior

After horizon crossing, massive fields decay and for large m also oscillate:

$$(\pm \tau)^{3/2 \pm i\mu}$$
 where  $\mu = \sqrt{\frac{m^2}{H^2} - \frac{9}{4}}$ 

Therefore when the short modes cross the horizon, the amplitude of the long mode is suppressed in a specific way.



#### Squeezed limit encodes the mass spectrum

A-H/M, Chen/Wang, Assassi/Baumann/Green

$$S_{
m squeezed} \propto \left(rac{k_{
m long}}{k_{
m short}}
ight)^{1/2 \pm i \mu}$$

2 cases:  $\,\mu\,$  real or imaginary  $\,$  oscillation or scaling

9

Squeezed limit is more generic than equilateral contribution and contains a mass measurement. Acts like a "cosmological collider".

Pirsa: 16100068 Page 10/40

## High mass oscillating template



Gauss-type window

function to cut off equilateral contribution

Squeezed limit oscillations

Mass parameter 
$$\;\mu=\sqrt{rac{m^2}{H^2}-rac{9}{4}}\;$$



## Low mass scaling template

Low mass "intermediate" template was given by Chen&Wang in 0909.0496

$$S^{\text{int}}(k_1, k_2, k_3) = f_{\text{NL}}A(k_1, k_2, k_3) \frac{3^{\frac{9}{2} - 3\nu}}{10} \frac{k_1^2 + k_2^2 + k_3^2}{(k_1 + k_2 + k_3)^{\frac{7}{2} - 3\nu}} (k_1 k_2 k_3)^{\frac{1}{2} - \nu}$$

Mass parameter 
$$\nu \equiv \sqrt{(9/4)-(m/H)^2} = -i\mu$$
  $0 < \nu < 3/2$ 

squeezed limit 
$$k_3 \ll k_1 = k_2, \, S^{\rm int} \sim (k_3/k_1)^{\frac{1}{2}-\nu}$$

#### Scaling regions:

For small m: scales like local NG (as multi-field inflation should)

$$S^{\mathrm{loc.}} \sim (k_3/k_1)^{-1}$$

For larger m: interpolates towards equilateral NG

$$S^{\mathrm{equi.}} \sim k_3/k_1$$

11

Pirsa: 16100068

## Low mass scaling template

Low mass "intermediate" template was given by Chen&Wang in 0909.0496

$$S^{\text{int}}(k_1, k_2, k_3) = f_{\text{NL}}A(k_1, k_2, k_3) \frac{3^{\frac{9}{2} - 3\nu}}{10} \frac{k_1^2 + k_2^2 + k_3^2}{(k_1 + k_2 + k_3)^{\frac{7}{2} - 3\nu}} (k_1 k_2 k_3)^{\frac{1}{2} - \nu}$$

Mass parameter 
$$\nu \equiv \sqrt{(9/4)-(m/H)^2} = -i\mu$$
  $0 < \nu < 3/2$ 

squeezed limit 
$$k_3 \ll k_1 = k_2, \, S^{\rm int} \sim (k_3/k_1)^{\frac{1}{2}-\nu}$$

#### Scaling regions:

For small m: scales like local NG (as multi-field inflation should)

$$S^{\text{loc.}} \sim (k_3/k_1)^{-1}$$

For larger m: interpolates towards equilateral NG

$$S^{\mathrm{equi.}} \sim k_3/k_1$$

11

Pirsa: 16100068

## How much phase space to cut off?

**Objectives:** Avoid equilateral bump, keep template accurate, get as much signal as possible

#### Cutoff depends on NG from self interactions. We chose a compromise.



#### Most signal is in the first peak.





12

Pirsa: 16100068 Page 14/40

## **Outlook: Detecting spin**

The squeezed limit also tells us about the spin of massive particles!

$$S \propto \left(rac{k_{
m long}}{k_{
m short}}
ight)^{1/2\pm\mu} P_s(\cos\Theta)$$
spin Angle between k\_l and k\_s

Arkani-Hamed, Maldacena 2015. Extended in Lee, Baumann, Pimentel 2016



String theorists dream: Find a particle with spin>2.

Not generally predicted by string inflation, but we are way closer to the string energy scale than with any other probe.

13

Pirsa: 16100068 Page 15/40

## How about a CMB analysis?

- For the non-oscillating case, this has already been done in Planck NG 2015
- For the oscillating case the overlap of the full shape with equilateral is large ( $C \sim 0.9$ ).
- Therefore for the oscillating shape a search for the collider signal only makes sense after equilateral non-Gaussianity has been detected.

AHM example



This does not look good in the near term. But given the very exciting signal we won't give up that quickly. We need a much better probe than CMB!

## A FORECAST FOR 21CM FROM THE DARK AGES

15

Pirsa: 16100068 Page 17/40

## 21 cm signal from the dark ages

#### 21cm tomography prior to structure formation

Ideal probe for inflationary physics: Very large number of Fourier modes, perturbative regime. Zaldarriaga, Loeb 2004

Origin: Cosmic neutral hydrogen prior to star formation maps the matter density.

- → Absorption of CMB photons at 21cm spin flip transition.
- $\rightarrow$  21cm radiation anisotropies today at wave length 21.12[(1+z)/100]m



Pirsa: 16100068 Page 18/40

## What kind of experiment would we need?

**Mode counting** 

$$k \sim 10^{-4} {
m Mpc}^{-1} ext{ to } k \sim 10^2 {
m Mpc}^{-1}$$
  $\sigma_a \sim \sqrt{\left(\frac{k_{
m min}}{k_{
m max}}\right)^3}$ 

$$\sigma_a \sim \sqrt{\left(rac{k_{
m min}}{k_{
m max}}
ight)^3}$$

Radial (Frequency) resolution

We assume 30<z<100

$$\frac{\delta\nu}{\nu} = \frac{\Delta z}{z+1}$$

Angular resolution limited by size (baseline) of experiment

$$k_{
m max} \simeq 2\pi 
u_0 b rac{1}{d(z)(1+z)} rac{1}{c}$$



We assume that the radial resolution matches the angular resolution

17

Pirsa: 16100068 Page 19/40

## Projecting to the 21cm signal

We use linear perturbation theory and assume that the 21cm signal traces the matter perturbations.

$$\langle \delta T_{21}(\mathbf{k}_1) \delta T_{21}(\mathbf{k}_2) \delta T_{21}(\mathbf{k}_3) \rangle = (2\pi)^3 \delta_{\rm D}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \times B_{\delta T}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3)$$

#### **Secondary Non-Gaussianity**

- Main sources
  - 21cm temperature depends non-linearly on baryon density and velocity
  - Gravitational interactions create non-Gaussianity
- Our approach: We used templates from Munoz et al 2015 that
  parametrize these effects to second order in delta\_b and delta\_v. We
  found O(1) changes in sensitivity for test cases.
- In principle N-body sims can determine these effects well (no complicated feedback mechanisms).

18

Pirsa: 16100068 Page 20/40

## Noise and foregrounds

#### **Foregrounds**

- Atmosphere partially opaque at these frequencies
  - → Often the moon is advocated as a possible location
- Noise amplitude many orders of magnitude larger than signal amplitude.
   Especially galactic synchrotron radiation.
- But: synchrotron is much more smooth in frequency than signal.
   Component separation is theoretically possible.
- We assume that one can completely subtract the foregrounds.

We do a cosmic variance limited forecast (a very futuristic assumption)

19

Pirsa: 16100068 Page 21/40

## Rough size of non-Gaussianities

#### **Gravitational coupling (minimal case)**

Heavy fields couple to inflaton only through gravity.  $f_{\rm NL} \ll 10^{-2}$  Loop corrections to the bispectrum.

#### Direct coupling of heavy fields and inflaton

In principle up to  $\,f_{
m NL} < {\cal O}(1)\,$  (limited by perturbative control) AHM  $\,f_{
m NL} \sim \epsilon M_{Pl}^2 \lambda^2\,$ 



#### Self interactions of heavy fields and direct coupling

e.g. Chen/Wang QSFI  $f_{
m NL}\gtrsim \mathcal{O}(1)$ 



This is valid for  $\max \lesssim \mathcal{O}(H)$ . Above that there is a **Boltzmann factor,** giving exponential suppression.  $e^{-\frac{\mu}{H}}$ 

20

Pirsa: 16100068

## Results for the oscillating template m>H



We assume fixed cosmology and do not marginalize over secondary non-Gaussianity.

Red shift range: 30<z<100

$$\mu = \sqrt{\frac{m^2}{H^2} - \frac{9}{4}}$$

#### **Rough interpretation:**

- Sensitivity almost mass independent (no Boltzmann suppression in our template)
- With an array of O(10) km one can probe O(1) self interactions.
- With an array of O(100) km, one can probe models with direct coupling.
- The AHM amplitude is only realistic if the operator is not Planck suppressed

## Results for the non-oscillating template m<H



$$\nu \equiv \sqrt{(9/4) - (m/H)^2}$$

Smaller v means larger mass

#### Rough interpretation:

- Sensitivity is mass dependent because scaling because the scaling in the squeezed limit is mass dependent
- Sensitivity can be 1-2 orders of magnitude better than in the oscillating case.
- For low masses a 10 km array would already give interesting constraints

## Mass determination





$$\nu = 0.8 \text{ (purple)}, \ \nu = 1.0 \text{ (blue)}, \ \nu = 1.4 \text{ (red)}$$

Test case: fnl = 1, baseline = 100 km

Under these fortunate assumptions one could measure even a spectrum of particles with well determined masses.

23

Pirsa: 16100068 Page 25/40

## Prospects for cosmological collider physics?

It seems that in the time frame of decades there is a fair chance, but in the near term there is little chance, because of known limits on local and equilateral NG.



Pirsa: 16100068 Page 26/40

## NON-ADIABATIC HEAVY PARTICLE PRODUCTION

Theoretical model **1606.00513** by Flauger, Mirbabayi, Senatore, Silverstein Data analysis ideas from unpublished work MM, Senatore, Silverstein

25

Pirsa: 16100068 Page 27/40

## Non-adiabatic particle production

- Previous part of the talk: slow-roll background and time independent coupling constants.
- If we relax these assumptions, we get very a different phenomenology.
- This section of the talk: heavy particles with time dependent mass functions, but inflaton background dynamics are still slow roll.



Source: Flauger et al 2016

Pirsa: 16100068

## 2 classes of mass functions $m_{\chi}$

Regular case (discrete shift symmetry)

Shift symmetry  $\Phi \to \Phi + {\rm const.}$  to protect inflaton potential from corrections

 $\Delta \mathcal{L} = \frac{\mathcal{O}_{\Delta}}{\Lambda \Delta - 4}$   $\Lambda : \text{UV scale}$   $\Delta : \text{Operator dimension}$ 

Discrete version  $arphi 
ightarrow arphi + 2\pi f$  . e.g small sine one top of potential

In our case e.g.: 
$$m_\chi^2 = m_0^2 + g^2 \sin\left(rac{\phi}{f}
ight)$$
 or more "Fourier components"

**Disordered case** 

Maybe the microphysics in the UV is very complicated, masses and couplings fluctuate stochastically

Source: Amin, Baumann 2016

## Non-adiabatic particle production

Inflaton background (or time) dependent mass term

$$m_{\chi}(\phi)^2\chi^2$$

EOM of the massive field χ

$$\ddot{\psi}_k + 3H\dot{\psi}_k + \omega_k^2\psi_k = 0$$
  $\omega_k^2 = \mu^2 + \Delta m(t)^2 + (k/a)^2$ 

Particle production happens when the evolution becomes non-adiabatic

$$|\dot{\omega}_k| > \omega_k^2$$

In this case the **adiabatic vacuum (WKB) is no longer valid** and the particle number n\_k not conserved. (**as in preheating**)

If UV physics is complicated, with many fields and couplings, this condition might arrive generically.

A concrete UV model where this happens is axion monodromy.

28

Pirsa: 16100068 Page 30/40

## Concrete example from axion monodromy

Coupling heavy fields via field dependent mass

$$V(\chi_I, \phi) \simeq \sum_I \frac{1}{2} m_{\chi_I}(\phi)^2 \chi_I^2 + V_0(\phi)$$

Axion monodromy includes two sectors of this type:

• Case 2a 
$$\mathcal{L}_m = \sum_n rac{1}{2} \chi^2 (\mu^2 + g^2 (\phi - 2\pi n f)^2)$$
  $igwedge$ 



• Case 2b 
$$\mathcal{L}_m = \frac{1}{2}\chi^2(\mu^2 + 2g^2f^2\cos\frac{\phi}{f})$$

Near production:  $m_\chi^2 = m_0^2 + g^2 \dot{\phi}^2 (t-t_n)$ 

Source: Flauger et al 2016

These fields are generally included in the theory and their effects can be large enough to be observable in the CMB.

## Concrete example from axion monodromy

Coupling heavy fields via field dependent mass

$$V(\chi_I, \phi) \simeq \sum_I \frac{1}{2} m_{\chi_I}(\phi)^2 \chi_I^2 + V_0(\phi)$$

Axion monodromy includes two sectors of this type:

• Case 2a 
$$\mathcal{L}_m = \sum_n rac{1}{2} \chi^2 (\mu^2 + g^2 (\phi - 2\pi n f)^2)$$
  $\bigvee$ 

• Case 2b 
$$\mathcal{L}_m = rac{1}{2}\chi^2(\mu^2 + 2g^2f^2\cosrac{\phi}{f})$$

Near production: 
$$m_\chi^2 = m_0^2 + g^2 \dot{\phi}^2 (t-t_n)$$

Source: Flauger et al 2016

These fields are generally included in the theory and their effects can be large enough to be observable in the CMB.

## Calculating n-point functions

Particle production + coupling term --> curvature perturbation source J

$$J = \chi^2 \frac{\delta}{\delta \phi} m_\chi^2$$

Calculate n-pt function of the sources, e.g.  $\langle JJJ
angle$ 

$$\langle JJJ \rangle$$

and from that the inflaton/curvature n-point functions

$$\langle \delta \phi_{\mathbf{k}_1} \dots \delta \phi_{\mathbf{k}_N} \rangle \sim (2\pi)^3 \delta(\sum_i \mathbf{k}_i) \frac{\bar{n}_{\chi}}{H^3} H^{N+3} \sum_n (H\eta_n)^{-3} \prod_{i=1}^N \frac{\hat{h}(k_i \eta_n)}{k_i^3}$$

Besides these source terms, there are additional interference terms like X particle annihilation that also contribute.

Interesting extension: produce fermions with this mechanism

## Unexplored phenomenology

Primordial bispectrum example (for k1=k2=k3=k):



No significant overlap with previously examined bispectrum shapes, including resonance and feature shapes.

Can have large amplitude.



CMB analysis needed!

31

Pirsa: 16100068 Page 34/40

## Inverted signal to noise hierarchy possible

- Normal case: Higher N-point functions are smaller because they involve higher powers of the coupling constants (more vertices) or higher order vertices (more suppressed in EFT).
- Present case: In part of the parameter space the signal to noise can grow
  with N. This is possible because non-adiabatic production already modifies
  the free theory of the heavy particles.
- Roughly:  $(S/N)_N \sim \epsilon x^N$  (x>1, epsilon <1) up to some N, e.g. O(100)
- Interesting from a data analysis point of view: higher N-point functions have been much less constrained. One could easily have a detection in WMAP data.

32

Pirsa: 16100068 Page 35/40

## N-point CMB estimator

- Potential problems: combinatoric explosion of terms in shape function, contamination by lower N-point functions (especially power spectrum), combinatoric explosion of MC estimator correction terms
- None of these are fatal for this shape (for odd N).
- Schematically

Senatore, MM, unpublished

$$M_{\{\ell,m\}}^{N} = M_{m_1 m_2 \dots \ell_N}^{\ell_1 \ell_2 \dots \ell_N} = \langle a_{\ell_1 m_1} a_{\ell_2 m_2} \dots a_{\ell_N m_N} \rangle_c$$

$$\mathcal{E} = \frac{1}{N!F} \sum_{\ell_i m_i} M_{\{\ell,m\}}^{N*} \left[ (C^{-1}a)_{\ell_1 m_1} (C^{-1}a)_{\ell_2 m_2} \dots (C^{-1}a)_{\ell_N m_N} \right]$$

Old KSW trick

$$\mathcal{E} = \frac{1}{N!F} \sum_{q} \int dr \, r^2 \int d\Omega \left( M^{N,q}(\mathbf{r}, \widehat{\mathbf{r}}) \right)^N$$

$$M^{N,q}(r,\widehat{\mathbf{r}}) = \sum_{\ell_i m_i} (C^{-1}a)_{\ell_1 m_1} M_{\ell}^{N,q}(\mathbf{r}) Y_{\ell m}(\widehat{\mathbf{r}})$$

33

Page 36/40

Pirsa: 16100068

## N-point CMB estimator

- Potential problems: combinatoric explosion of terms in shape function, contamination by lower N-point functions (especially power spectrum), combinatoric explosion of MC estimator correction terms
- None of these are fatal for this shape (for odd N).
- Schematically

Senatore, MM, unpublished

$$M_{\{\ell,m\}}^{N} = M_{m_1 m_2 \dots \ell_N}^{\ell_1 \ell_2 \dots \ell_N} = \langle a_{\ell_1 m_1} a_{\ell_2 m_2} \dots a_{\ell_N m_N} \rangle_c$$

$$\mathcal{E} = \frac{1}{N!F} \sum_{\ell_i m_i} M_{\{\ell,m\}}^{N*} \left[ (C^{-1}a)_{\ell_1 m_1} (C^{-1}a)_{\ell_2 m_2} \dots (C^{-1}a)_{\ell_N m_N} \right]$$

Old KSW trick

$$\mathcal{E} = \frac{1}{N!F} \sum_{q} \int dr \, r^2 \int d\Omega \left( M^{N,q}(\mathbf{r}, \widehat{\mathbf{r}}) \right)^N$$

$$M^{N,q}(r,\widehat{\mathbf{r}}) = \sum_{\ell_i m_i} (C^{-1}a)_{\ell_1 m_1} M_{\ell}^{N,q}(\mathbf{r}) Y_{\ell m}(\widehat{\mathbf{r}})$$

33

Pirsa: 16100068 Page 37/40

## **Monte Carlo Planck maps**

Shape function

$$S^N(k_1,k_2,k_3,\dots)=rac{k_1^{i\omega/H}k_2^{i\omega/H}k_3^{i\omega/H}\dots}{(k_1k_2k_3\dots)^{3(N-1)/N}}$$
 (approximation of the full shape)

- Need to scan over frequency and phase (look elsewhere effect).
- · Run estimator on Planck sims





Data results upcoming. First N>4 analysis.

## Outlook: Searching for time dependent couplings

- How to search for non-Gaussianity systematically?
- Well established in the case of slow roll inflation with constant couplings.
   EFTI action

$$S = \int d^4x \sqrt{-g} \left[ M_{\rm Pl}^2 \dot{H}(t+\pi) \left( \dot{\pi}^2 - \frac{(\partial_i \pi)^2}{a^2} \right) + M_1^4(t+\pi) \left( \dot{\pi}^2 + \dot{\pi}^3 + \dots \right) + M_2^4(t+\pi) \left( \dot{\pi}^3 + \dots \right) + M_3^4(t+\pi) \left( \dot{\pi}^4 + \dots \right) \right]$$

- Less well understood: How to look systematically for time dependent masses/couplings.
- Basic Idea (Flauger et al.): Fourier expand couplings

$$M_I^4(t) = \int d\omega \; e^{i\,\omega\,t} \, \tilde{M}_I^4(\omega) \simeq \sum_{J=-J_{\rm max}}^{J_{\rm max}} \; e^{i\,\Delta\omega\,J\,t} \, \tilde{M}_{I,J}^4$$

• BUT: large look elsewhere effect. Adiabatic and non-adiabatic effects. Higher N point functions etc. Can we be systematic?

35

Pirsa: 16100068 Page 39/40

### **Conclusions**

#### The good side

- The weakly non-linear modes contained in the observable universe may well allow the detection of heavy particles m~H.
- Heavy particles are very common in UV models of inflation
- Cosmological perturbations have access to 3-5 orders of magnitude in energy, lots of room for discoveries.
- We have reviewed adiabatic and non-adiabatic particle production. The latter has unexplored phenomenology with CMB data.

#### The bad side

- CMB sensitivity on equilateral non-Gaussianity will not be significantly beaten any time soon.
- 21cm mapping of the dark ages is decades away.

We are at the beginning of cosmological collider physics.

37

Pirsa: 16100068 Page 40/40