Title: Advances in quantum query complexity

Date: Oct 26, 2016 04:00 PM

URL: http://pirsa.org/16100066

Abstract: I will describe some of the recent progress in quantum query complexity, including super-quadratic separations between classical and quantum measures for total functions, a better understanding of the power of some lower bound techniques, and insight into when we should expect exponential quantum speedups for partial functions.

Pirsa: 16100066 Page 1/33

Advances in Quantum Query Complexity

Shalev Ben-David

Pirsa: 16100066 Page 2/33

Query Complexity

• f = OR

- We care about the worst case
- D(f) = n deterministic queries
- $R(f) = \Omega(n)$ random queries (bounded error)
- $Q(f) = \Theta(n^{1/2})$ quantum queries (bounded error)

Pirsa: 16100066 Page 3/33

Query Complexity

• f = OR

- We care about the worst case
- D(f) = n deterministic queries
- $R(f) = \Omega(n)$ random queries (bounded error)
- $Q(f) = \Theta(n^{1/2})$ quantum queries (bounded error)
- We can prove these!

Pirsa: 16100066

Questions in Query Complexity

- How much do resources like randomness and quantumness help?
 - Is there a function that can be solved with very few randomized queries, but which require a lot of deterministic queries?
- When do these resources help?
 - What structure must the functions have?
- What are good <u>lower bound techniques</u> for these models?

Pirsa: 16100066 Page 5/33

Part 1: How Much Speedup?

Pirsa: 16100066

Page 6/33

Partial Functions: Quantum vs Randomized

- [Simon '94]: Function f with $Q(f) \approx \log^2 n$ $R(f) \approx n^{1/2}$
- [Aaronson, Ambainis '14]:
 - "Forrelation" with

$$Q(f) \approx 1$$

$$R(f) \approx n^{1/2}$$

Give a candidate function for

$$Q(f) \approx \log n$$
 $R(f) \approx n$

$$R(f) \approx n$$

Pirsa: 16100066

Partial Functions: Quantum vs Randomized

- [Simon '94]: Function f with $Q(f) \approx \log^2 n$ $R(f) \approx n^{1/2}$
- [Aaronson, Ambainis '14]:
 - "Forrelation" with

$$Q(f) \approx 1$$

$$R(f) \approx n^{1/2}$$

Give a candidate function for

$$Q(f) \approx log n$$

$$R(f) \approx n$$

Show that 1 vs. n gap is impossible

Pirsa: 16100066

Separations in 2015

- April 4 (Göös, Pitassi, Watson):
 - Introduced the idea of pointer functions
 - Quadratic separation between D(f) and deg(f)
- June 16 (Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs):
 - Quadratic separation between D(f) and R(f)
 - Power 4 separation between D(f) and Q(f)
 - Many other separations, involving $R_0(f)$ and $Q_F(f)$
- June 26 (B.):
 - Power 2.5 separation between R(f) and Q(f)
 - Introduced cheat sheets

Pirsa: 16100066 Page 9/33

Separations in 2015

- April 4 (Göös, Pitassi, Watson):
 - Introduced the idea of pointer functions
 - Quadratic separation between D(f) and deg(f)
- June 16 (Ambainis, Balodis, Belovs, Lee, Santha, Smotrovs):
 - Quadratic separation between D(f) and R(f)
 - Power 4 separation between D(f) and Q(f)
 - Many other separations, involving $R_0(f)$ and $Q_F(f)$
- June 26 (B.):
 - Power 2.5 separation between R(f) and Q(f)
 - Introduced cheat sheets
- Nov 5 (Aaronson, B., Kothari):
 - Used cheat sheets to reprove many of the other separations
 - Power 4-o(1) separation between Q(f) and approximate degree

Pirsa: 16100066 Page 10/33

A Super-Grover Speedup

Pirsa: 16100066 Page 11/33

Turning partial functions total

- Given a partial function f that has a good separation, how can we turn it total?
- For concreteness, set f to be f(x) = 1 if x is 2/3 ones, 0 if x is 2/3 0s ("two-thirds")

Pirsa: 16100066 Page 12/33

Turning partial functions total

 The problem is that the *promise* is difficult for a randomized algorithm to calculate

$$p_f(x) = \begin{cases} 1 & \text{if } x \in Dom(f) \\ 0 & \text{otherwise} \end{cases}$$

Pirsa: 16100066 Page 13/33

AND-OR: Is there an all-1 column?

0	0	1	0	1	0	1	0
1	1	1	1	1	1	0	0
1	0	1	0	0	0	1	0
1	0	1	1	1	1	1	1
0	0	1	0	1	1	1	0
1	1	1	1	1	1	0	1
0	1	1	0	0	1	0	1
1	0	0	1	0	1	1	1

Pirsa: 16100066 Page 14/33

AND-OR: Is there an all-1 column?

0	0	1	0	1	0	1	0
1	1	1	1	1	1	0	0
1	0	1	0	0	0	1	0
1	0	1	1	1	1	1	1
0	0	1	0	1	1	1	0
1	1	1	1	1	1	0	1
0	1	1	0	0	1	0	1
1	0	0	1	0	1	1	1

Pirsa: 16100066 Page 15/33

Pirsa: 16100066 Page 16/33

- If f = Forrelation:
 - $R(g) \approx n^{2.5}$
 - Q(g) ≈ n

Pirsa: 16100066 Page 17/33

Step 2: hide a cheat sheet

Pirsa: 16100066 Page 18/33

Pirsa: 16100066 Page 19/33

Pirsa: 16100066 Page 20/33

More Complexity Measures

	D	R_0	R	C	RC	bs	Q_E	deg	Q	$\widetilde{\deg}$
D		2, 2	2*, 3	2, 2	2*, 3	2*, 3	2, 3	2, 3	4*, 6	4*, 6
		$[{\rm ABB^+15}]$	$[ABB^+15]$	$\land \circ \lor$	$\land \circ \lor$	$\land \circ \lor$	$[{ m ABB^+15}]$	[GPW15]	$[{ m ABB^+15}]$	[ABB+15]
R_0	1, 1		2, 2	2, 2	2*, 3	2*, 3	2, 3	2, 3	3, 6	4*, 6
	\oplus		$[{\rm ABB^+15}]$	$\land \circ \lor$	$\land \circ \lor$	$\land \circ \lor$	$[{\rm ABB^+15}]$	[GJPW15]	$[{ m ABB^+15}]$	[ABB ⁺ 15]
R	1, 1	1, 1		2, 2	2*, 3	2*, 3	1.5, 3	2, 3	2.5, 6	4*, 6
	\oplus	\oplus		$\land \circ \lor$	$\land \circ \lor$	$\land \circ \lor$	$[{ m ABB^+15}]$	[GJPW15]	Th. 1	[ABB+15]
C	1, 1	1, 1	1, 2		2, 2	2, 2	1.1527, 3	$\log_3 6, 3$	2, 4	2, 4
	\oplus	\oplus	\oplus		[GSS13]	[GSS13]	[Amb13]	[NW95]	^	٨
RC	1, 1	1, 1	1, 1	1, 1		1.5, 2	1.1527, 3	$\log_3 6$, 3	2, 2	2, 2
	\oplus	\oplus	\oplus	\oplus		[GSS13]	[Amb13]	[NW95]	^	٨
bs	1, 1	1, 1	1, 1	1, 1	1, 1		$1.1527,\ 3$	$\log_3 6, 3$	2, 2	2, 2
US	\oplus	\oplus	\oplus	\oplus	\oplus		[Amb13]	[NW95]	^	٨
Q_E	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3		2, 3	2, 6	4*, 6
	\oplus	⊼-tree	⊼-tree	$\land \circ \lor$	$\land \circ \lor$	$\land \circ \lor$	No Villa	Th. 4	^	Th. 2
deg	1, 1	1.3267, 2	1.3267, 3	2, 2	2*, 3	2*, 3	1, 1		2, 6	2, 6
	\oplus	⊼-tree	⊼-tree	$\land \circ \lor$	$\land \circ \lor$	$\land \circ \lor$	\oplus		\wedge	٨
Q	1, 1	1, 1	1, 1	2, 2	2*, 3	2*, 3	1, 1	2, 3		4*, 6
	\oplus	\oplus	\oplus	Th. 3	Th. 3	Th. 3	\oplus	Th. 4		Th. 2
$\widetilde{\deg}$	1, 1	1, 1	1, 1	7/6, 2	7/6, 3	7/6, 3	1, 1	1, 1	1, 1	
	\oplus	\oplus	\oplus	$\wedge \circ \mathrm{Ed}$	$\wedge \circ \mathrm{Ed}$	$\wedge \circ \mathrm{Ed}$	\oplus	\oplus	\oplus	

New separations

Separations we reprove

Pirsa: 16100066 Page 21/33

Ambainis, Kokainis, Kothari (Dec 3)

Pirsa: 16100066 Page 22/33

Ambainis, Kokainis, Kothari (Dec 3)

 $\mathbf{Q} \approx \mathbf{UC}^{1.5\text{-o}(1)}$

Pirsa: 16100066 Page 23/33

Cheat Sheets in Communication Complexity

- Anshu, Belovs, B., Göös, Jain, Kothari, Lee, Santha
 - Get the 2.5 separation in communication complexity
 - Also get a power 2-o(1) separation between R and partition number
 - Main contribution: showing the lower bound for R
- Anshu, B., Garg, Jain, Kothari, Lee (coming soon)
 - Prove a "cheat sheet theorem" for quantum communication
 - Get a separation between quantum communication and approximate logrank

Pirsa: 16100066 Page 24/33

Cheat Sheets in Communication Complexity

- Anshu, Belovs, B., Göös, Jain, Kothari, Lee, Santha
 - Get the 2.5 separation in communication complexity
 - Also get a power 2-o(1) separation between R and partition number
 - Main contribution: showing the lower bound for R
- Anshu, B., Garg, Jain, Kothari, Lee (coming soon)
 - Prove a "cheat sheet theorem" for quantum communication
 - Get a separation between quantum communication and approximate logrank
 - No previous super-linear separation was known

Pirsa: 16100066 Page 25/33

Can we get better lower bound techniques?

- If the lower bound techniques we have all break, can we hope for better techniques?
- For quantum query complexity, there is a tight technique

Pirsa: 16100066 Page 26/33

Randomized Lower Bounds

- If there are no techniques, how do we prove the cheat sheet lower bounds?
- Answer: we have specialized theorems that help lower bound functions built from other functions
- Other answer: cheat sheet lower bounds were annoying and ad hoc

 B., Kothari 2016: new lower bound technique ("Sabotage Complexity") that makes some things a bit easier

Pirsa: 16100066 Page 27/33

Pirsa: 16100066 Page 28/33

B. 2012

- For some concrete types of promises, there cannot be an exponential quantum speedup for any function
- Permutation promise: "the input is a permutation of {1,2,...,n}"

Pirsa: 16100066 Page 29/33

Aaronson, B. 2015

- "You can usually <u>sculpt</u> speedups"
 - If you fix a function in advance and get to choose a promise afterwards
 - Then for most functions, you can get an exponential quantum speedup
 - Exact characterization ("H-index")
 - "Quantum speedups are all about the promise"

Pirsa: 16100066 Page 30/33

Open Problems

- Pretty much everything is still open
- What is the largest possible quantum speedup for a total function? Is it 2.5? 3? 6?
- What is the largest possible quantum speedup for a partial function? Is log n vs. n possible?

Pirsa: 16100066 Page 31/33

Open Problems

- Pretty much everything is still open
- What is the largest possible quantum speedup for a total function? Is it 2.5? 3? 6?
- What is the largest possible quantum speedup for a partial function? Is log n vs. n possible?
- What are some other promises on which there are or aren't exponential quantum speedups? Can we get a complete characterization?

Pirsa: 16100066 Page 32/33

Open Problems

- Pretty much everything is still open
- What is the largest possible quantum speedup for a total function? Is it 2.5? 3? 6?
- What is the largest possible quantum speedup for a partial function? Is log n vs. n possible?
- What are some other promises on which there are or aren't exponential quantum speedups? Can we get a complete characterization?
- What are some better lower bound techniques for randomized algorithms?

Pirsa: 16100066 Page 33/33