Title: The Space of Quantum Field Theories

Date: Oct 26, 2016 02:00 PM

URL: http://pirsa.org/16100065

Abstract: Recent explorations of the space of quantum field theories have provided novel topological and geometric information about this space. This voyage has resulted in the solution of some long-standing questions: the computation of sought-after topological invariants (Gromov-Witten invariants) by a new physics-based approach, the first instance of exact correlation functions in a four-dimensional QFT and the unearthing of the action of dualities on the basic observables of three dimensional gauge theories.

Pirsa: 16100065

• Based on work with Doroud, Le Floch, Lee, Gerchkovitz, Komargodski, Ishtiaque, Hsin, Schwimmer, Seiberg, Theisen, Karasik, Pufu

• I would like to highlight my students

Nima Doroud

Nafiz Ishtiaque

Bruno Le Floch

Pirsa: 16100065 Page 2/36

Introduction

- A remarkable wealth of phenomena is captured by quantum field theory
 - Particle Physics
 - Statistical Mechanics
 - Quantum Many Body
 - Cosmology
- QFT has provided remarkable insights into mathematics
- Ideas in quantum information have yielded new perspectives on QFT
- Posterchild the universality and unity of Physics

quantum theory + relativity \longrightarrow QFT

• Are they related?

$$QFT_1 \rightarrow QFT_2$$
?

 \Longrightarrow

explore the space of QFTs $\,$

 \mathcal{M}

• Given a QFT we explore \mathcal{M} by deforming with local operators \mathcal{O}_i

$$Z[\lambda^i] = \langle e^{\int dx \sum_i \lambda^i \mathcal{O}_i(x)} \rangle$$

- \mathcal{O}_i are tangent vectors in $T\mathcal{M}$
- λ^i are coordinates of \mathcal{M}
- The degrees of freedom and dynamics of a physical system depend on the energy scale at which it is probed

• This is formalized by the renormalization group equations

• The renormalization group equation encodes the dependence of physical quantities on the scale being probed

$$\mu \frac{\partial}{\partial \mu} \log Z[\lambda^i] + \sum_j \beta_{\lambda^j}(\lambda^i) \frac{\partial}{\partial \lambda^j} \log Z[\lambda^i] = 0$$

where

$$\mu \frac{\partial}{\partial \mu} \lambda^j \equiv \beta_{\lambda^j}(\lambda^i)$$

 β_{λ^j} are vector fields in \mathcal{M} controlling the RG flow: UV \rightarrow IR

• Operators characterized by their effect on long distance physics

• irrelevant: $\beta > 0$

• relevant: $\beta < 0$

• marginal: $\beta = 0$

Universality

- The long distance, infrared limit of any QFT described either by:
 - 1. Topological QFT (topological phases of matter)
 - 2. Scale Invariant QFT \rightarrow a conformal field theory (CFT)

Invariant under scale transformations:

$$x^{\mu} \to \alpha x^{\mu}$$

Symmetry in the IR is enhanced

$$Poincare_d \rightarrow Poincare_d \bowtie R$$

Under reasonable conditions further enhanced to conformal symmetry

$$Poincare_d \to SO(2, d)$$

CFT

• A local QFT has a conserved energy-momentum $T_{\mu\nu}$ tensor

$$\partial^{\mu}T_{\mu\nu}=0$$

• A CFT is invariant under angle-preserving coordinate transformations

$$ds_{\mathbb{R}^d}^2 \to e^{2\sigma(x)} ds_{\mathbb{R}^d}^2$$

 \Longrightarrow

$$T^{\mu}_{\mu} = 0$$

• Operators/states in a CFT organized in conformal families

primary operator:
$$\mathcal{O} \to e^{-\Delta\sigma(x)}\mathcal{O}$$

• Observables are the correlation functions of primaries

$$\langle \mathcal{O}_1(x_1) \mathcal{O}_2(x_2) \dots \mathcal{O}_k(x_k) \rangle$$

- CFTs are directly relevant for nature, e.g.:
 - Critical Phenomena (thermal fluctuations)
 - Quantum Phase Transitions (quantum fluctuations)

Foundational in other domains:

- Candidate for physics beyond the standard model
- String Theory
- Quantum Gravity with Anti-de-Sitter asymptopia
- Mathematics

Pirsa: 16100065

• CFTs play a foundational role in QFT

a QFT obtained as an RG-flow triggered by an operator in a CFT

• CFTs induce an ordering in the space of all QFTs

RG flow is irreversible

Pirsa: 16100065 Page 11/36

$\mathcal{M}_{\mathrm{CFT}}$

• Only coarse features of the space of QFTs are known

 \bullet Study the space of CFTs $\mathcal{M}_{\mathrm{CFT}} \subset \mathcal{M}$ generated by marginal operators

• Alternative descriptions of the same quantum theory

ullet Operators transported around $\mathcal{M}_{\mathrm{CFT}}$ acquire a Berry phase

• Physical quantities depend nontrivially on λ^I

 $\langle \mathcal{O}_1(x_1) \mathcal{O}_2(x_2) \dots \mathcal{O}_k(x_k) \rangle_{\{\lambda\}}$

• Quantum stability of marginal operators $\{\mathcal{O}_{\mathcal{I}}\}$ is non-trivial, e.g.

$$\langle \mathcal{O}_{\mathcal{I}}(0)\mathcal{O}_{\mathcal{J}}(1)\mathcal{O}_{\mathcal{K}}(\infty)\rangle = 0$$

Stability typically requires:

- extra symmetries (current algebra, supersymmetry,...)
- large N

 \bullet Physically relevant example (Ashkin-Teller, XY-model,...)

ullet $\mathcal{M}_{\mathrm{CFT}}$ is a Riemannian manifold

ullet $\mathcal{M}_{\mathrm{CFT}}$ endowed with a canonical metric: Zamolodchikov metric

$$\langle \mathcal{O}_I(x)\mathcal{O}_J(x)\rangle_{\{\lambda^I\}} = \frac{\gamma_{IJ}(\lambda^K)}{x^{2d}}$$

- Nontrivial function of the couplings λ^I
- Riemann curvature on $\mathcal{M}_{\mathrm{CFT}}$ computed by a four-point function of \mathcal{O}_I 's

String Theory and Conformal Invariance

- String Theory vacua described by 2d CFTs
- ullet Conformal Invariance on the string worldsheet \Longrightarrow Spacetime physics

$$\mathcal{L} = \sqrt{g} \left[R + \text{Tr} F_{\mu\nu}^2 + \bar{\Psi} \not\!\!D \Psi + \ldots \right]$$

• Worldsheet theory described by a nonlinear sigma model

$$S = \int_{\Sigma} d^2 x \, G_{\alpha\beta} \partial \phi^{\alpha} \bar{\partial} \phi^{\beta}$$

where

$$\phi: \Sigma \longrightarrow X$$

• NLSM path integral subject to important non-perturbative corrections

worldsheet instantons : $\bar{\partial}\phi^{\alpha} = 0$

- Deep and rich interplay between spacetime and worldsheet physics
- Consider vacua of the type $\mathbb{R}^{1,3} \times M$
 - 1. massless fields \longleftrightarrow marginal operators in the 2d CFT

$$\Phi_I \longleftrightarrow \mathcal{O}_I$$

2. spacetime interactions \longleftrightarrow correlators in the 2d CFT

$$\int d^4x \sqrt{g} \, \gamma_{IJ} \, \partial \Phi^I \cdot \partial \Phi^J \longleftrightarrow \gamma_{IJ} = \langle \mathcal{O}_I(1) \mathcal{O}_J(0) \rangle$$

 \Longrightarrow

spacetime action requires knowing the Zamolodchikov metric of 2d CFT!

•	Physically	and	mathematically	appealing	vacua
---	------------	-----	----------------	-----------	-------

M is a Calabi-Yau manifold

2d CFT has extra symmetry: superconformal field theory (SCFT)

 \Longrightarrow

 $\mathcal{M}_{\mathrm{CFT}}$ is a Kähler manifold

$$\gamma_{I\bar{J}} = \partial_I \partial_{\bar{J}} \mathcal{K}$$

where

 \mathcal{K} is the Kähler potential

 \mathcal{K} determines kinetic terms, Yukawa couplings,... in spacetime

- Deep and rich interplay between spacetime and worldsheet physics
- Consider vacua of the type $\mathbb{R}^{1,3} \times M$
 - 1. massless fields \longleftrightarrow marginal operators in the 2d CFT

$$\Phi_I \longleftrightarrow \mathcal{O}_I$$

2. spacetime interactions \longleftrightarrow correlators in the 2d CFT

$$\int d^4x \sqrt{g} \, \gamma_{IJ} \, \partial \Phi^I \cdot \partial \Phi^J \longleftrightarrow \gamma_{IJ} = \langle \mathcal{O}_I(1) \mathcal{O}_J(0) \rangle$$

 \Longrightarrow

spacetime action requires knowing the Zamolodchikov metric of 2d CFT!

RG Approach to \mathcal{K}

1. Perform Weyl transformation and place CFT on a two-sphere

$$ds_{S^2}^2 = e^{2\sigma(x)} ds_{\mathbb{R}^2}^2 = \left(\frac{1}{1 + \frac{x^2}{4r^2}}\right) ds_{\mathbb{R}^2}^2$$

2. Promote coupling constants of CFT to background fields

$$\lambda^I \to \lambda^I(x)$$

 \Longrightarrow

this leads to a conformal anomaly

Anomalies

• An anomaly is quantum mechanical violation of a classical symmetry

$$\partial^{\mu} j_{\mu} = O(\hbar)$$

• Anomalous violation of Ward identities

$$\delta_{\sigma} \ln Z = \int dx \, \mathcal{A} \neq 0$$

- Play a fundamental role in QFT
 - ▶ restrict the space of consistent (unitary) QFTs
 - constrain RG fows (anomaly matching)
 - ▶ play an important role in observed explaining physical phenomena

Conformal Anomaly

• The background fields $g_{\mu\nu}$ and λ^I induce a conformal anomaly

$$\delta_{\sigma} \log Z[g_{\mu\nu}, \lambda] = \frac{c}{24\pi} \int d^2x \sqrt{g} R \, \delta\sigma - \frac{1}{4\pi} \int d^2x \sqrt{g} \, \gamma_{I\bar{J}} \partial\lambda^I \cdot \partial\bar{\lambda}^{\bar{J}} \delta\sigma + \dots$$

where

- c is "central charge" of the CFT
 - measures various universal quantities of the CFT
 - ▶ determines the entanglement entropy of the CFT
- $\gamma_{I\bar{J}} = \partial_I \partial_{\bar{J}} \mathcal{K}$ is the metric on \mathcal{M}_{CFT}
- Physical consistency implies $[K] = 0 \implies$

 $\mathcal{M}_{\mathrm{CFT}}$ is non-compact

• Integrating the anomaly equation yields

see also Jockers, et al

$$Z[S^2] = r^{c/3} e^{-\mathcal{K}(\lambda,\bar{\lambda})}$$

- The partition function of SCFT on S^2 computes \mathcal{K} !
- We have given $Z[S^2]$ a physical meaning. Measures flat space correlators

but how we compute $Z[S^2]$?

Go with the RG flow

1. Embed CFT in the renormalization group flow of a gauge theory in the UV

UV gauge theory
IR CFT

Denote the sphere partition function of gauge theory by

$$Z[S^2]_{UV}$$

2. Proof that $Z[S^2]_{UV}$ is a renormalization group invariant observable

$$\frac{\partial}{\partial \mu} Z[S^2]_{UV} = 0$$

 \Longrightarrow

$$Z[S^2] = Z[S^2]_{UV}$$

3. Compute $Z[S^2]_{UV}$ exactly. Saddle point approximation is exact!

 $Z[S^2]$ as an exact function of the couplings spanning $\mathcal{M}_{\mathrm{CFT}}$

ullet $Z[S^2]$ admits a contour integral representation

see also Benini, Cremonesi

$$Z[S^2] = \sum_{B} \int_{\mathfrak{t}} da \, e^{-4\pi i r \xi a + i \vartheta B} \prod_{\alpha \in \Delta} \left[\left(\frac{\alpha \cdot B}{2r} \right)^2 + (\alpha \cdot a)^2 \right] \prod_{w \in \mathbf{R}} \frac{\Gamma\left(-ir(w \cdot a) - \frac{w \cdot B}{2} \right)}{\Gamma\left(1 + ir(w \cdot a) - \frac{w \cdot B}{2} \right)}$$

- determines exact metric in $\mathcal{M}_{\mathrm{CFT}}$
- by a physics-based approach based on renomalization group flows
- we also showed that

$$Z_X[S^2] = Z_Y[S^2]$$

- this approach does not rely on mirror symmetry
- leads to new topological invariants N_{β}

\bullet Topological invariants

\widetilde{N}_{m_0,m_1}	$m_0 = 0$	$1/_{2}$	1	$^{3/_{2}}$	2	5/2	3
$m_1 = 0$	-		56		0		0
$^{1}/_{2}$		192		896		192	
1	56		2544		23016		41056
$3/_{2}$		896		52928		813568	
2	0		23016		1680576		35857016
$\frac{5}{2}$		192		813568		66781440	
3	0		41056		35857016		3074369392
$^{7/2}$		0		3814144		1784024064	
4	0		23016		284749056		96591652016
$\frac{9}{2}$		0	0 # 4 *	6292096	000 700 701	20090433088	
11/	0		2544	0011111	933789504	105 500 00 1000	1403214088320
$^{11}/_{2}$		0		3814144		105588804096	10,000,100,000,000
12/	0		56	010 500	1371704192	000 100 000 010	10388138826968
$^{13/2}$		0		813568	000 700 704	277465693248	41 500 001 501 044
15/	0		0	50.000	933 789 504	000 000 100 70 4	41 598 991 761 344
$15/_{2}$		0		52928	004740050	380930182784	00.070.700.100.004
17/	0		0	000	284749056	OMM 40K 000 040	93 976 769 192 864
$^{17/2}$		0		896	0.5.05.00.0	277465693248	1000100000000
10/	0		0		35857016	105 500 00 1000	122940973764384
$^{19/2}$		0		0	1.000 570	105588804096	00.000.000.100.004
10	0		0		1680576	00 000 400 000	93 976 769 192 864
$^{21/_{2}}$		0	0	0	00.016	20090433088	41 500 001 701 044
23/	0		0	0	23016	1 704 004 064	41 598 991 761 344
$\frac{23}{2}$	0	0	0	0	0	1784024064	10 200 120 000 000
25/-	0		0		0	00701 440	10 388 138 826 968
$\frac{25}{2}$	0	0	0	0	0	66 781 440	1 402 01 4 000 200
27/2	0	0	0	0	0	019 560	1403214088320
$^{27/2}$	0	0	0	0	0	813 568	06 501 650 016
29/ ₂	0	0	0	0	0	100	96591652016
$^{29/2}$		0	0	0	0	192	2.074.260.200
15 31/2	0	0	0	0	0	0	3074369392
$31/_{2}$		0		0		0	

arXiv:1208.6244

Pirsa: 16100065

Correlators in 4d QFTs

- "Solving" a 4d QFT is currently out of reach
- No known exact correlation function of local operators in a 4d QFT

$$\langle \mathcal{O}_1(x_1) \mathcal{O}_2(x_2) \dots \mathcal{O}_k(x_k) \rangle \qquad x_i \in \mathbb{R}^4$$

recently, this was accomplished in 4d CFTs with extra symmetries

$$\mathcal{N} = 2 \text{ SCFTs}: T_{\mu\nu}, S^a_{\mu\alpha}, \bar{S}^a_{\mu\dot{\alpha}}$$

• supercurrents generate supersymmetry generators

$$Q^a_{\alpha} = \int dx \, S^a_{0\alpha} \qquad \bar{Q}^a_{\dot{\alpha}} = \int dx \, \bar{S}^a_{0\dot{\alpha}}$$

- these include supersymmetric gauge theories, e.g:
 - 1. maximally supersymmetric Yang-Mills ($\mathcal{N}=4$)
 - 2. SQCD: SU(N) with $N_F = 2N$

Extremal Correlators

• Study correlators in 4d $\mathcal{N}=2$ superconformal field theories

$$\langle \mathcal{O}_{I_1}(x_1)\mathcal{O}_{I_2}(x_2)\dots\mathcal{O}_{I_n}(x_n)\overline{\mathcal{O}}_{\bar{J}}(y)\rangle_{\{\tau,\bar{\tau}\}}$$

where

$$[\overline{Q}_{\dot{\alpha}}^a, \mathcal{O}_I] = 0 \qquad [Q_{\alpha}^a, \overline{\mathcal{O}}_{\bar{J}}] = 0$$

• \mathcal{O}_I generate a ring

$$\mathcal{O}_I(x)\mathcal{O}_J(0) = \mathcal{O}_I\mathcal{O}_J(0)$$

 \Longrightarrow

correlators captured by

$$\langle \mathcal{O}_I(x) \, \overline{\mathcal{O}}_{\bar{J}}(0) \rangle_{\{\tau,\bar{\tau}\}} = \frac{G_{I\bar{J}}(\tau,\bar{\tau})}{|x|^{2\Delta_I}} \delta_{\Delta_I \Delta_{\bar{J}}}$$

• these correlators do not preserve Poincaré supersymmetries

• $G_{I\bar{J}}(\tau,\bar{\tau})$ when $\Delta_I=2$ is the Zamolodchikov metric of $\mathcal{M}_{\mathrm{CFT}}$

 $\{\tau\}$ are coordinates in $\mathcal{M}_{\mathrm{CFT}}$

$$\tau = \frac{\theta}{2\pi} + \frac{4\pi i}{g^2}$$

• correlators afflicted with perturbative and non-perturbative corrections due to Yang-Mills instantons

can we compute $G_{I\bar{J}}(\tau,\bar{\tau})$?

Mixing anomaly

• Consider the partition function of the CFT on four-sphere S^4

$$Z[S^4] = \left\langle \exp \int dx \, d\theta \, \sqrt{g} \sum_I \tau^{(I)} \mathcal{O}_I(x) \right\rangle_{S^4}$$

- Since S^4 is conformal to \mathbb{R}^4 , can \mathbb{R}^4 correlators be computed from $Z[S^4]$?
 - This naive expectation fails due to a novel "mixing anomaly" in S^4
 - \mathcal{O}_I mixes with \mathcal{O}_J on S^4 if $\Delta_I = \Delta_J + 2\mathbb{N}$. e.g.:

$$\mathcal{O}_I \to \mathcal{O}_I + \alpha(\tau, \bar{\tau}) R \, \mathbb{1}$$
 $\Delta_I = 2$

 \implies resonance anomaly

$$\langle \mathcal{O}_I(N)\overline{\mathcal{O}}_{\bar{J}}(S)\rangle_{S^4} \neq 0$$

Extremal Correlators

• Goal is to determine

$$G_{2n}(\tau,\bar{\tau}) = \left\langle \mathcal{O}_n(\infty) \overline{\mathcal{O}}_n(0) \right\rangle_{\mathbb{R}^4}$$

where

$$\mathcal{O}_n = \left(\operatorname{Tr}(\phi^2)\right)^n$$

• By virtue of Ward identity

$$\langle \mathcal{O}_n(N)\overline{\mathcal{O}}_m(S)\rangle_{S^4} = \frac{1}{Z[S^4]}\partial_{\tau}^n\partial_{\bar{\tau}}^m Z[S^4]$$

• Gram-Schmidt \Longrightarrow correlator written as ratio of determinants

$$G_{2n}(\tau,\bar{\tau}) = \frac{1}{Z[S^4]} \frac{\det_{(k,l)=0,\dots,n} \left(\partial_{\tau}^k \partial_{\bar{\tau}}^l Z[S^4]\right)}{\det_{(k,l)=0,\dots,n-1} \left(\partial_{\tau}^k \partial_{\bar{\tau}}^l Z[S^4]\right)}$$

⇒ Connections with integrability

Toda Chain

• Extremal correlators acted by integrable differential equations: Toda chain

$$\partial_{\tau}\partial_{\bar{\tau}}q_n = e^{q_{n+1}-q_n} - e^{q_n-q_{n-1}} \qquad n = 1, 2, \dots$$

where

$$q_n = \ln\left(G_{2n} Z[S^4]\right)$$

- Correlators governed by a set of coupled oscillators q_n
- Prescribed dependence of the left-most oscillator $q_0 = \ln(Z[S^4])$
- Extremal correlators computable from $\mathbb{Z}[S^4]$

Comments

- Algorithm to compute extremal correlators
- Express observables in \mathbb{R}^4 in terms of a certain $Z[S^4]$

 \Longrightarrow

Non-perturbative solution of QFT correlators in d > 2 at finite N

- ▶ Connections with the conformal bootstrap program
- ▶ Mathematical connections and predictions
- ▶ Allow to test conjectures and ideas about large order behaviour in QFT

Pirsa: 16100065 Page 33/36

Resurgence

- Use our exact results to probe behaviours and conjectures in QFT, such as
 - Borel summability of the perturbative expansion
 - Convergence of the Pade approximation

Realizes a conjecture made about QCD perturbation theory

Karliner

Pirsa: 16100065

Conclusion

• The space of QFTs is vast and largely uncharted

 \bullet Anomalies, S^n and the RG-flow have given us topological and geometrical insights into $\mathcal{M}_{\mbox{CFT}}$

• These studies have shed new light on old questions in QFT and mathematics

Pirsa: 16100065 Page 35/36

Pirsa: 16100065 Page 36/36