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Abstract: <p>What natural CFT quantities can &oeseeé€e in the interior of the bulk AdS in a diffeomorphism invariant way? And how can we use
them to learn about the emergence of local bulk physics? Inspired by the Ryu-Takayanagi relation, we construct a class of ssimple non-local
operators on both sides of the duality and demonstrate their equivalence. Integrals of free bulk fields along geodesics/minimal surfaces are dual to
what we will call &€0s0PE blocks&€e: Individual conformal family contributions to the OPE of local operators. Our findings can be utilized to
reconstruct local bulk operators and unify a number of previously disconnected AAS/CFT results. We extend this kinematic correspondence to
incorporate gravitational interactions in AdS3 by relating geodesic operators to the Virasoro OPE blocks, hence providing a natura CFT
prescription for &ogyravitationa dressing&€s. We conclude with discussion of preliminary results on an interesting CFT structure that generalizes
our dictionary to include arbitrary local bulk interactions. </p>
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Philosophical Overture

Gravity disfavors locality:
Diffeomorphism invariance.
Black hole resonances in high energy scattering.
Holographic bound.
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Holographic bound.

The practical problems:
How to define operators in gravity?
What mathematics describe their dynamics?
How do we recover the local degrees of freedom?

Page 5/63



Pirsa: 16100060

Philosophical Overture

Gravity disfavors locality:
Diffeomorphism invariance.
Black hole resonances in high energy scattering.
Holographic bound.

The practical problems:
How to define operators in gravity?
What mathematics describe their dynamics?
How do we recover the local degrees of freedom?

Our goal: Make progress via a gauge-invariant approach
to the AdS/CFT dictionary.
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A Clue from AdS/CFT

New approach to observables in gravity: Ryu-Takayanagi relation.

Minimal Surface

A

(it
AdS >
Iiuny(c/u‘_r

Entanglement entropy = Area of minimal surfaces
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A Clue from AdS/CFT

New approach to observables in gravity: Ryu-Takayanagi relation.

Minimal Surface

A

Uitz
AdS g >
Hnny(c/u‘_r

Entanglement entropy = Area of minimal surfaces
Has all the right properties:
Probes geometry of bulk interior.
Diff invariant — makes reference only to the boundary.
Natural non-local object in the CFT.
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A Gauge-Invariant Dictionary

Apply RT philosophy to the operator dictionary:

|dentify natural CFT operators dual to extended bulk
probes.

Reconstruct the familiar local bulk fields and describe their
dynamics.
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A Gauge-Invariant Dictionary

Apply RT philosophy to the operator dictionary:

|dentify natural CFT operators dual to extended bulk
probes.

Reconstruct the familiar local bulk fields and describe their
dynamics.

Ultimate goal: What is the responsible for
the approximate at low energies?
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Our Approach

Step 1: Gauge-invariant dictionary for free bulk fields.
(“A Stereoscopic Look into the Bulk”)

Step 2: Include gravitational interactions in 2+1 dimensions.

(See also Sam’s talk in a couple of weeks!)

Step 3: Incorporate arbitrary local interactions.
(In progress...)
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Geodesic Operators

Geodesics and minimal surfaces are special bulk objects.
Both defined with reference to the asymptotic boundary.
Let's associate operators with them.
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Geodesic Operators

Geodesics and minimal surfaces are special bulk objects.
Both defined with reference to the asymptotic boundary.
Let's associate operators with them.

Restrict to AdS; for simplicity: O (Vopan) = / ds ¢(z, z)|

Yepxzp
¢(x, 2)

FY
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Geodesic Operators

Geodesics and minimal surfaces are special bulk objects.
Both defined with reference to the asymptotic boundary.
Let's associate operators with them.

Restrict to AdS; for simplicity: O (Vopan) = / ds ¢(z, z)|

FY

FyiEL:I:R
Radon Transform
¢(x, 2)
[ J L ]
Iy, IR
\_______/
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Global OPE Blocks

We are looking for a natural CFT bi-local.
The OPE provides with an organizational principle.

Product of any two operators is expanded as:

Oi (2)0;(0) = > Cijp |2|® 2739 (1 4 by 20, + by 22" 0,0, + ....) Ok (0)
k
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Global OPE Blocks

We are looking for a natural CFT bi-local.
The OPE provides with an organizational principle.

Product of any two operators is expanded as:

Oi (2)0;(0) = > Cijp |2|® 2739 (1 4 by 20, + by 22" 0,0, + ....) Ok (0)
k

= [ 274 Gl (3, 0)
k OPE Block
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Global OPE Blocks

OPE blocks admit an integral representation.

B (z,y) = / dwdw G (w,w; z,y) Ok (w, W)
J Oy
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Global OPE Blocks

OPE blocks admit an integral representation.

B (z,y) = / dwdw G (w,w; z,y) Ok (w, W)
J Oy

Smear the primary operator Ok (w,w) over the causal
diamond defined by the two points.

° ° _ Z

Oy () O2(y) k
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Global OPE Blocks

OPE blocks admit an integral representation.

B (z,y) = / dwdw G (w,w; z,y) Ok (w, W)
J Oy

Smear the primary operator Ok (w,w) over the causal
diamond defined by the two points.

° ° _ Z

Oy () O2(y) k

(On (ac)OH(y)@k(w, w))
(Ou(z)On(y))

Smearing function: Gi(w,w;z,y) =
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Gauge-Invariant Dictionary 1.0

OPE Blocks are dual to geodesic operators:

~

Bh,ﬁ(vamR) - GS(’Y-'ELJJR) -

[ ds o(a.2)

TepzR

Y

——

¢(z, 2)

Page 20/63



Kinematic Space

Geodesic operators and OPE blocks are bi-local functions on the
boundary.

They live on the space of pairs of points or, equivalently, the space
of causal diamonds.
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Kinematic Space

Geodesic operators and OPE blocks are bi-local functions on the
boundary.

They live on the space of pairs of points or, equivalently, the space
of causal diamonds.

CFT, Kinematic Space AdSy
Ty Y
] "

- b - -
Z Y
N~ —

This is kinematic space and it has geometric structure.
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Kinematic Space

Utilize conformal symmetry to define a metric on kinematic space.

ZTyuTy
2

Ly (x —y)
jz -y’

ds? = detdy”  with: L = N — 2

T

Signature (d,d): If 2 pairs of points share a point, their kinematic distance
Is zero (no invariant cross-ratio for 3 points)
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Kinematic Space

Utilize conformal symmetry to define a metric on kinematic space.
TuTy

L, (x—1y _
o { > )drl:‘”’d'q” with: L = N — 2
Ty z

ds® =

Signature (d,d): If 2 pairs of points share a point, their kinematic distance
Is zero (no invariant cross-ratio for 3 points)

For a CFT, kinematic space decomposes to a product of two de Sitter

spaces.
o duyduy dvyduvg
ds® = 5 5
[ug — uy| |lvg — v
L J
T
ds,
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Proof of the Dictionary

Utility of kinematic space: OPE blocks and geodesic operators
behave as free kinematic fields!
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Proof of the Dictionary

Utility of kinematic space: OPE blocks and geodesic operators
behave as free kinematic fields!

OPE blocks: Under a conformal map they transform as

B (z,y) = B (2/,y)
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Proof of the Dictionary

Utility of kinematic space: OPE blocks and geodesic operators
behave as free kinematic fields!

OPE blocks: Under a conformal map they transform as

B (z,y) = B (2/,y)

Blocks are eigenvectors of the conformal Casimirs:

[LQ, Bk (.’L’, y)] — CkBk((La y)
where: Cy = (A + 4;)(Ag + I — 2)

[zza By, (.’L’, 7})] - ékBk(:Ea /U)
where: C}, = (Ag — i) (A — Uk — 2)
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Proof of the Dictionary

Bulk operators: Obey equation of motion.

(DAdS — mQ) Q§ (fL’) =0
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Proof of the Dictionary

Bulk operators: Obey equation of motion.
(DAdS — mQ) Q§ (fL’) =0

2 T
Intertwinement: [Ddb‘z + Uas, — m’Ak] ¢(v)=0

/ ds DA{I‘,S;; e = (Ddb‘z + D(!.Sz) / d.‘)‘ " e
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Proof of the Dictionary

Bulk operators: Obey equation of motion.
(DAdS — mz) gb (fL’) =0

2 T
Intertwinement: [Ddb‘z + Uas, — m’Ak] ¢(v)=0

/ ds DAU‘,S:; e — — (Ddb‘z + D(!Sg) / d.‘)‘ " e

Redundancy: Not all functions on kinematic
space are consistent Radon transforms!

~

(Oas, —Oas,) ¢ =0
We need constraints: John's equations.
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Proof of the Dictionary

One last step: Boundary conditions.
Determined by the coincident limit.

OPE Block Geodesic Operator

Ay ~
By (z,y) = |z —y[™" O (z) $(z = y) ~ |z — y|*Oal(z)
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Proof of the Dictionary

One last step: Boundary conditions.
Determined by the coincident limit.

OPE Block Geodesic Operator

Ay ~
By (z,y) = |z —y[™" O (z) $(z = y) ~ |z — y|*Oal(z)

Both objects obey the same equations with the same
boundary conditions.

By (z,y) = gg(fy) =/ ds ¢(x, 2)

~
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Local Bulk Operators

Use geodesic operators to reconstruct the local operators:
Inverse Radon transform.

sinhp dp \ az~)=p

| 1 T dp d ) Nz,
f (:I:) — _; / (?) (_ (-dvcr-(lgc .}(‘(} (f}/)) |I‘ f(f’}).

0

Respects conformal symmetry.
Manifestly diffeomorphism invariant.
Reconstruction point defined by set of geodesics that cross it.
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Local Bulk Operators

Result: Integral over the spacelike separated boundary region:

2 2? Ty <

O(p=0)= / dt / d) Ka(t) Oa(t,0) | T

I = — }8{:

. Af A—2 ~ ~—~
Ka(t) = ——(cost) log cost

A

This matches the HKLL global smearing function.
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Local Bulk Operators

Use geodesic operators to reconstruct the local operators:
Inverse Radon transform.

sinhp dp \ az~)=p

| 1 T dp d ) Nz,
f (:I:) — _; / (?) (_ (-dvcr-(lgc .}(‘(} (f}/)) |I‘ f(f’}).

0

Respects conformal symmetry.
Manifestly diffeomorphism invariant.
Reconstruction point defined by set of geodesics that cross it.
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What is it good for?

Principle behind the correspondence: conformal symmetry.

The idea: Repackaging our data by utilizing symmetries can manifest
connections previously invisible.
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What is it good for?

Principle behind the correspondence: conformal symmetry.

The idea: Repackaging our data by utilizing symmetries can manifest
connections previously invisible.

Indeed: It helps us “tidy up” seemingly disconnected holographic results:
Conformal blocks as geodesic Witten diagrams.

First law of entanglement entropy and linearized Einstein’s
equations.

Pirsa: 16100060 Page 37/63



What is it good for?

Conformal blocks as geodesic Witten diagrams:

Recall: O;(z) 0, (0) = \.’1:|7A""7A*" Z CiixBy (z,0)
k
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What is it good for?

Conformal blocks as geodesic Witten diagrams:

Recall: O;(z) 0, (0) = \.’1:|7A""7A*" Z CiixBy (z,0)
k
O, O3
0By, (1, 22) Bk (z3,24) |0) = gr|1234 (1, V) = .

O, O,
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What is it good for?

Conformal blocks as geodesic Witten diagrams:

Recall: O;(z) 0, (0) = \.’1:|7A""7A*" Z CiixBBy (2,0)
k
O, O3
0By, (1, 22) Bk (z3,24) |0) = gr|1234 (1, V) = .

O, O,

Entanglement and Einstein’s equations:

0S5 = (5<Hm<>(l>
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What is it good for?

Conformal blocks as geodesic Witten diagrams:

Recall: O;(z) 0, (0) = \.’1:|7A""7A*" Z CiixBBy (2,0)
k
O, O3
0By, (1, 22) Bk (z3,24) |0) = gr|1234 (1, V) = .

O, O,

Entanglement and Einstein’s equations:

0S5 = (5<Hm<>(l>

(O + 2d)6H = — / (Dags — 2d)8g,,ati" = 0

/9

|
Hmml I EB,”][]
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STEP 2: GRAVITATIONAL

DRESSING

Geodesic Operators and Virasoro OPE Blocks




A Glimpse of Interactions

Without interactions: ¢a(v) = Ba (%)

-

—~ B
\\J — <Bk0>
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A Glimpse of Interactions

Without interactions: ¢a(v) = Ba (%)

-

—~ B
\\J — <Bk0>

With inteﬁractions:
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A Glimpse of Interactions

Without interactions: ¢a(v) = Ba (%)

—~ B
\\J — <Bk0>

With mteractlons INGD )+ Z ay, "B (v

R
~ £ (BLOO)
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A Glimpse of Interactions

Without interactions: ¢a(v) = Ba (%)

Y

[

Y T

)

With interactions: ¢a(7) = ) + — Z ST B, (4
f‘/'”f_J A
\\\" # (BrOO)

What CFT principle determines these “dressed blocks”?
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Virasoro OPE Blocks

OPE of 2D CFTs is organized in larger block structures.

These are fixed by local conformal symmetry.
Oa(x1)Oa(zg) = VA2 + Z cRAYAA
k

We will call them Virasoro OPE blocks.

They contain the contributions from all local descendants.
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Virasoro OPE Blocks

2A
Identity Block: V]IAA(-'BIa:I:Q) = —x (1 + TBT + #Brgnp + - )
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Virasoro OPE Blocks

I 2A
Identity Block: VHAA(:III,-’IJ;.») = =% (1 + TBT + #Brgnp + - )
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Gauge Invariant Dictionary 2.0

What | would like to claim:

AA(.., .\ —%Em,mf
V]I (le,.LQ)—Eﬂ ¢ (z1,22)

6A ) 7
Vit (@1, @) = € ¢ 1Py (2, 7o)
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Semi-classical States

Semi-classical states: CFT states with well-defined energy.

Y (") — (1) (]
(T) ~ O(c) o ()

Necessary (not sufficient) requirement for smooth bulk geometry.
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Semi-classical States

Semi-classical states: CFT states with well-defined energy.

Y (") — (1) (]
(T) ~ O(c) o ()

Necessary (not sufficient) requirement for smooth bulk geometry.

It is convenient to decompose the stress tensor to a background
piece and a fluctuation piece:

T = (T) + 6T
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Semi-classical States

Semi-classical states: CFT states with well-defined energy.

Y (") — (1) (]
(T) ~ O(c) o ()

Necessary (not sufficient) requirement for smooth bulk geometry.

It is convenient to decompose the stress tensor to a background
piece and a fluctuation piece:

T = (T) + 6T

Virasoro OPE blocks decompose as well:

vk _ vgem.i—(:tassical [<T>:| s vk{lm:tua,ﬁi(m [(T), (ST]
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Semi-classical States

Semi-classical states: CFT states with well-defined energy.

Y (") — (1) (]
(T) ~ O(c) o ()

Necessary (not sufficient) requirement for smooth bulk geometry.

It is convenient to decompose the stress tensor to a background
piece and a fluctuation piece:

T = (T) + 6T

Virasoro OPE blocks decompose as well:

vk _ vgem.i—(:mssi(:al [<T>:| + vk{lm:tua,ﬁi(m [(T), (ST]
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Sketch of the proof

Semi-classical states are characterized only by their energy density:
(T'(x))

Let f(x) be a function such that:
(T(x)) = 5{/f(), 2}

Then we can find a frame in which the state looks like the vacuum.
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Sketch of the proof

Semi-classical states are characterized only by their energy density:
(T'(x))

Let f(x) be a function such that:
C
T(z)) = —{f(x),x
(T(2)) = 5{f(@), 2}
Then we can find a frame in which the state looks like the vacuum.

If geodesic operators and Virasoro blocks transform the same way
then the proof follows from previous discussion.
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Kinematic Liouville Theory

The length and the gravitationally dressed geodesic operators
admit an elegant description in kinematic space:
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Kinematic Liouville Theory

The length and the gravitationally dressed geodesic operators
admit an elegant description in kinematic space:

Decompose length: £, = w(ul, ug) -t @(1}1, ’Ug)

0w c 12

Equation for length; — = —e¢
i J Oul&u,g 6
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Kinematic Liouville Theory

The length and the gravitationally dressed geodesic operators
admit an elegant description in kinematic space:

Decompose length: £, = w(ul, ug) -t @(1}1, ’Ug)

0w c 12

Equation for length; — = —e¢
i J Oul&u,g 6

Equation for geodesic operators:
12 ~ 27
€ ¢ waulau,z@bk + bek(;bk =0

This is a Liouville theory!
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Taking stock...

Geodesic integrals of free fields are dual to global OPE blocks.

Gravitational dressing for geodesic operators becomes the
“Virasoro dressing” for the OPE.

These operators have a life of their own: Can be described as fields
on kinematic space in terms of a Liouville theory.
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Looking ahead...

Can we think of this Liouville theory as a quantum theory?

What CFT principle defines the dressed blocks for arbitrary
interactions?

Is there a useful kinematic space description for them?
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Looking ahead...

Can we think of this Liouville theory as a quantum theory?

What CFT principle defines the dressed blocks for arbitrary
interactions?

Is there a useful kinematic space description for them?

Can we use this dictionary to “see” inside black holes?

Can this teach us how to think of operators in gravity on flat and/or
de Sitter space?
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Bartek Czech Sam McCandlish

Thank you!

Amsterdam

Benjamin Mosk James Sully
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