Title: Chiral algebra and BPS spectrum of Argyres-Douglas theories from M5-branes.

Date: Oct 11, 2016 02:00 PM

URL: http://pirsa.org/16100054

Abstract: We study chiral algebras associated with Argyres-Douglas theories engineered from M5 brane. For the theory engineered using 6d (2,0) type J theory on a sphere with a single irregular singularity (without mass parameter), its chiral algebra is the minimal model of W algebra of JJ type. For the theory engineered using an irregular singularity and a regular full singularity, its chiral algebra is the affine Kac-Moody algebra of JJ type. We can obtain the Schur and Hall-Littlewood index of these theories by computing the vacua character of the corresponding chiral algebra.

Pirsa: 16100054 Page 1/29

Chiral Algebra and BPS Spectrum of Argyres-Douglas theories

Wenbin Yan
CMSA, Harvard University
Perimeter Institute, Oct 11 2016

Based on:

D. Xie, WY and S-T Yau, 1604.02155

J. Song, D. Xie and WY, work in progress

Pirsa: 16100054 Page 2/29

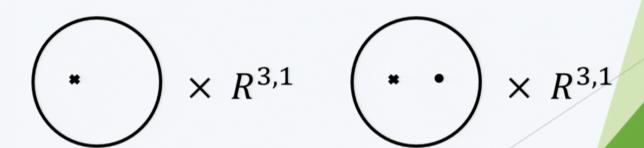
AD theories from M5 branes

Intrinsically **strongly coupled**, original examples are isolated fixed points of certain supersymmetric gauge theories (pure SU(3)) [AD95]

- Coulomb branch operators: fractional dimension
- Wall-crossing phenomenon

M5 brane construction:

Compactify 6d (2,0) type-J theory on a sphere with irregular puncture + at most one regular puncture (SCFT) [GMN09, BMT12, Xie13, WX15]



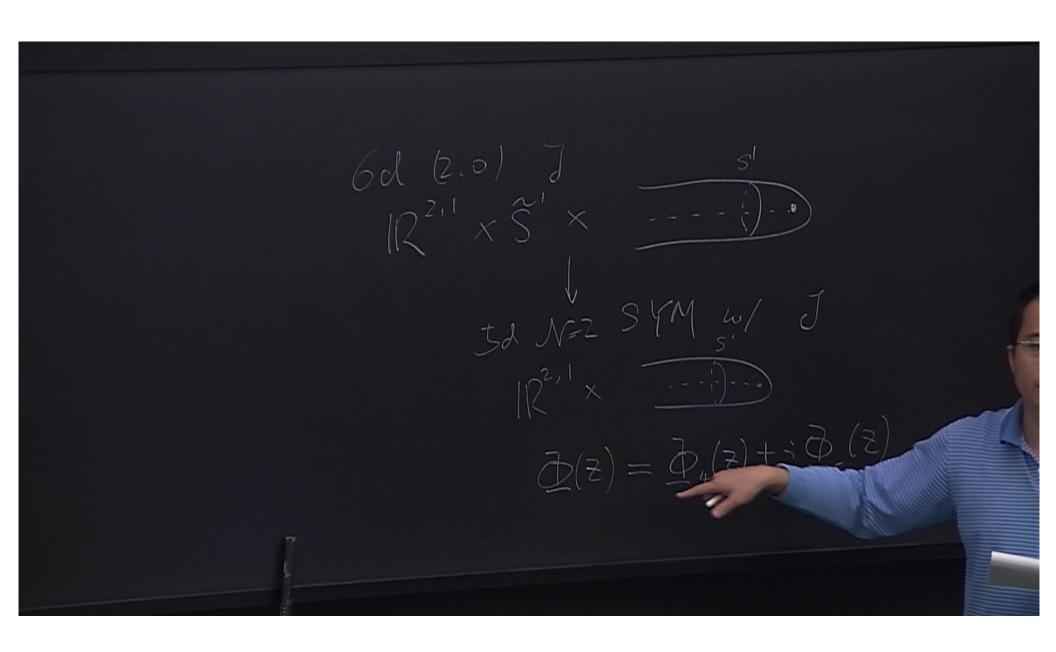
Pirsa: 16100054 Page 3/29

AD theories from M5 branes

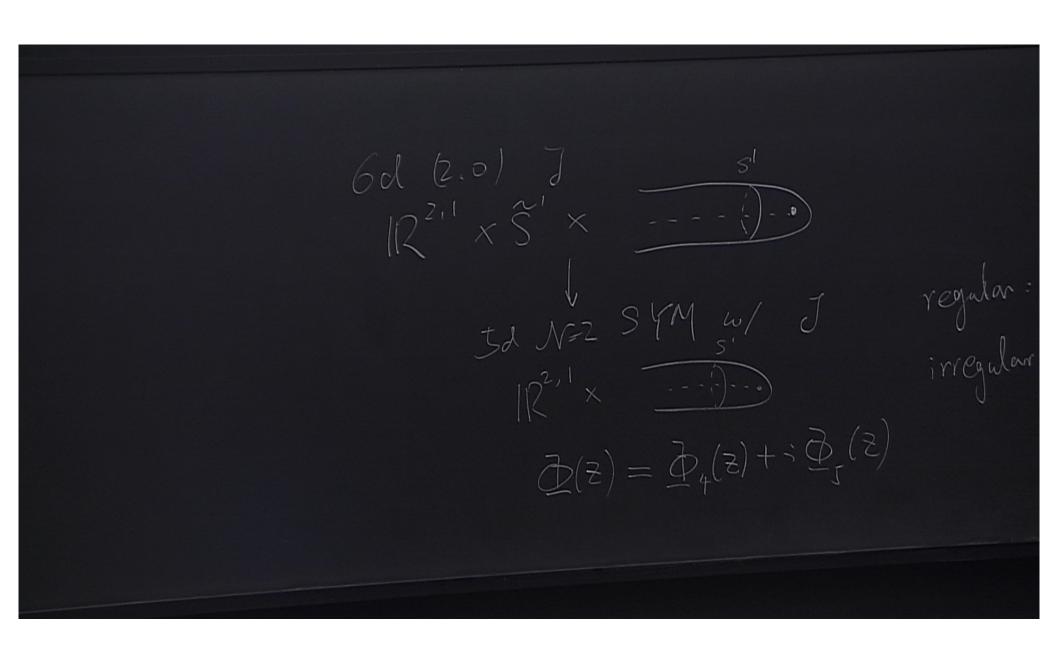
- ▶ 6d (2,0) theory on Riemann surface and Hitchin system
- Sphere with irregular puncture
 - ► Irregular puncture: $\Phi \sim \frac{T}{z^{2+k/b}} + \cdots$
 - Classified by J^b[k], J=ADE,
- Sphere with irregular puncture and regular puncture
 - ▶ Irregular puncture: $\Phi \sim \frac{T}{z^{2+k/b}} + \cdots$
 - Regular puncture: Y
 - ▶ Classified by $(J^b[k], Y)$, J=ADE
- k, b are integers, b usually has a few choices, k may be integers coprime with b

AD theories from M5 branes

- ▶ 6d (2,0) theory on Riemann surface and Hitchin system
- Sphere with irregular puncture
 - ► Irregular puncture: $\Phi \sim \frac{T}{z^{2+k/b}} + \cdots$
 - Classified by J^b[k], J=ADE,
- Sphere with irregular puncture and regular puncture
 - ▶ Irregular puncture: $\Phi \sim \frac{T}{z^{2+k/b}} + \cdots$
 - Regular puncture: Y
 - ▶ Classified by $(J^b[k], Y)$, J=ADE
- k, b are integers, b usually has a few choices, k may be integers coprime with b



Pirsa: 16100054 Page 6/29



Pirsa: 16100054

BPS spectrum of AD theories

- Our tool: (limit of) superconformal index
 Refined Witten index, only counts states saturate certain BPS condition,
- Schur index for N=2 SCFTs

Invariant under RG

 $I = Tr(-1)^F q^{E-R}$, trace over BPS states $E - j_1 - j_2 - 2R = 0$, $r + j_1 - j_2 = 0$ \hat{C} (Stress tensor, higher spin current,...), \hat{B} (moment maps,...),...

No Coulomb branch operators

 Usually easy to compute for Lagrangian theories or theories dual to Lagrangian theories. Need new ways for AD theories. Guess work involved

Pirsa: 16100054 Page 8/29

BPS spectrum of AD theories

- Our tool: (limit of) superconformal index
 Refined Witten index, only counts states saturate certain BPS condition,
 Invariant under RG
- Schur index for N=2 SCFTs

 $I = Tr(-1)^F q^{E-R}$, trace over BPS states $E - j_1 - j_2 - 2R = 0$, $r + j_1 - j_2 = 0$ \hat{C} (Stress tensor, higher spin current,...), \hat{B} (moment maps,...),...

No Coulomb branch operators

 Usually easy to compute for Lagrangian theories or theories dual to Lagrangian theories. Need new ways for AD theories. Guess work involved

Pirsa: 16100054 Page 9/29

Schur index and chiral algebra

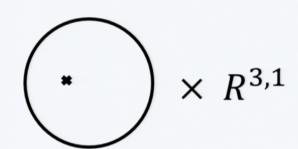
Two important properties

1.
$$c_{2d} = -12c_{4d}$$
, $k_{2d} = -k_F$

2. The (normalized) vacuum character of 2d chiral algebra is the 4d Schur index

Pirsa: 16100054 Page 10/29

- ▶ 6d (2,0) ADE theory compactified on a sphere with irregular puncture
- ► Irregular puncture: $\Phi \sim \frac{T}{z^{2+k/b}} + \cdots$
- ▶ Classified by $J^b[k]$, J=ADE



- ▶ AD theory $J^b[k]$
- 2d chiral algebra: diagonal coset model

$$A = \frac{g_l \oplus g_1}{g_{l+1}}$$
, with g=J, $l = -\frac{hk-b}{k}$

$$c_{2d} = \frac{l \dim J}{l+h} + \frac{\dim J}{1+h} - \frac{(l+1)\dim J}{l+1+h} = -12c_{4d}$$

- h is dual Coexter number
- Schur index = vacuum character

$A_{N-1}^{N-1}[k]$	$\frac{(Nk-N+1)(N+k+Nk-1)}{12(N-1+k)}$
$D_N^N[k]$	$\frac{((N-1)2k-N)(N+k(2N-1))}{12(k+N)}$
$E_6^9[k]$	$\frac{(4k-3)(13k+9)}{6(9+k)}$
$E_7^{18}[k]$	$\frac{7(k-1)(19k+18)}{12(18+k)}$
$E_8^{30}[k]$	$\frac{2(k-1)(30+31k)}{3(30+k)}$
$E_8^{20}[k]$	$\frac{(3k-2)(20+31k)}{3(20+k)}$

Pirsa: 16100054 Page 12/29

AD theories without flavor symmetry: Example

- $A_{N-1}^{N}[k] = (A_{N-1}, A_{k-1})$
- 2d chiral algebra: W(k,k+N) minimal model
- Schur index = vacuum character = $PE\left[\frac{(q-q^k)(q-q^N)}{(1-q)^2(1-q^{k+N})}\right] = PE\left[\frac{(q^2+\cdots+q^N)}{1-q}-\cdots\right]$, with $PE[x] = \exp\left[\sum_{n=1}^{\infty} \frac{1}{n} x^n\right]$
- > Symmetric under the exchange of k and N, two realization leads to the same SCFT
- ▶ The theory has N-1 operators with E-R=2,..., N. q^2 represents the Stress tensor.
- One can also read the relations between operators

Pirsa: 16100054

- Consider only full puncture F
- ▶ Classified by $(J^b[k], F)$
- ► Kac-Moody algebra *A*_{-*k_F*}

$$A = J$$
, $c_{2d} = -\frac{k_F \dim A}{h - k_F} = -12 c_{4d}$

$$k_F = h - \frac{b}{b+k}$$

Schur index = vacuum character (Kac-Wakimoto)

Theory	c_{4d}	k_F
$(A_{N-1}^N[k], F)$	$\frac{1}{12}(N+k-1)(N^2-1)$	$\frac{N(N+k-1)}{N+k}$
$(A_{N-1}^{N-1}[k], F)$	$\frac{(N+1)[N^2+N(k-2)+1]}{12}$	$\frac{(N-1)^2 + kN}{N+k-1}$
$(D_N^{2N-2}[k], F)$	$\frac{1}{12}N(2N-1)(2N+k-3)$	$\frac{(2N-2)(2N+k-3)}{2N-2+k}$
$(D_N^N[k], F)$	$\frac{(2N-1)[2k(N-1)+N(2N-3)]}{12}$	$\frac{2k(N-1)+N(2N-3)}{N+k}$

Pirsa: 16100054 Page 14/29

- Consider only full puncture F
- ▶ Classified by $(J^b[k], F)$
- Kac-Moody algebra A_{-kF}

$$ightharpoonup$$
 A=J, $c_{2d} = -\frac{k_F \dim A}{h - k_F} = -12 c_{4d}$

$$k_F = h - \frac{b}{b+k}$$

Schur index = vacuum character (Kac-Wakimoto)

$(E_6^{12}[k], F)$	$\frac{13(k+11)}{2}$	$\frac{12(k+11)}{k+12}$
$(E_6^9[k], F)$	$\frac{13}{6}(33+4k)$	$12 - \frac{9}{k+9}$
$(E_6^8[k], F)$	$\frac{13}{4}(22+3k)$	$12 - \frac{8}{k+8}$
$(E_7^{18}[k], F)$	$\frac{133}{12}(17+k)$	$\frac{18(k+17)}{k+18}$
$(E_7^{14}[k], F)$	$\frac{19}{12}(119+9k)$	$18 - \frac{14}{k+14}$
$(E_8^{30}[k], F)$	$\frac{62}{3}(29+k)$	$\frac{30(k+29)}{k+30}$
$(E_8^{24}[k], F)$	$\frac{31}{6}(116+5k)$	$30 - \frac{24}{k+24}$
$(E_8^{20}[k], F)$	$\frac{31}{3}(58+3k)$	$30 - \frac{20}{k+20}$

Pirsa: 16100054 Page 15/29

- ▶ Classified by $(J^b[k], F)$
- Kac-Moody algebra A_{-kF}

$$ightharpoonup$$
 A=J, $c_{2d} = -\frac{k_F \dim A}{h - k_F} = -12 c_{4d}$

▶ At b=h, we have

$$I = PE\left[\frac{q - q^{b+k}}{(1 - q)(1 - q^{b+k})} \chi_{adj}^{F}(z)\right]$$

Pirsa: 16100054

AD theories with flavor symmetry: Examples

$$A_4^5[-3] = D_2[SU(5)]$$
, Kac-Moody algebra is $su(5)_{-\frac{5}{2}}$

Schur index =
$$PE\left[\frac{q}{1-q^2}\chi_{adj}^{SU(5)}\right] = PE\left[\frac{q(1-q+q^2-q^3+\cdots)}{1-q}\mathbf{24} + q^2 - q^2\right]$$

- ▶ Higgs branch operators O (moment maps) in adjoint (24) rep of SU(5); Stress tensor; etc
- $ightharpoonup O_{24+1}^2 = 0$ which is the Joseph relation of the Higgs branch

Structure of the Higgs branch is encoded in the Schur index

Direct obtain the Higgs branch from the chiral algebra

Pirsa: 16100054 Page 17/29

AD theories with flavor symmetry: Examples

$$A_4^5[-3] = D_2[SU(5)]$$
, Kac-Moody algebra is $su(5)_{-\frac{5}{2}}$

Schur index =
$$PE\left[\frac{q}{1-q^2}\chi_{adj}^{SU(5)}\right] = PE\left[\frac{q(1-q+q^2-q^3+\cdots)}{1-q}\mathbf{24} + q^2 - q^2\right]$$

- ▶ Higgs branch operators O (moment maps) in adjoint (24) rep of SU(5); Stress tensor; etc
- $ightharpoonup O_{24+1}^2 = 0$ which is the Joseph relation of the Higgs branch

Structure of the Higgs branch is encoded in the Schur index

Direct obtain the Higgs branch from the chiral algebra

Pirsa: 16100054 Page 18/29

AD theory $(J^b[k], F)$, Kac-Moody algebra J_{-k_F}

The Higgs branch is determined by the associated variety X of th Kac-Moody algebra J_{-k_F}

For $k_{2d}=-h+rac{p}{q},\ p\geq h,$ associated variety X is certain nilpotent orbit \bar{O}_q

Details see Arakawa[2015], Beem-Rastelli

In our case, for b=h, the Higgs branch is determined by the nilpotent orbit \bar{O}_q

theory	k_{2d}	admissible?
$(A_{N-1}^N[k], F)$	$-N + \frac{N}{N+k}$	О
$(A_{N-1}^{N-1}[k], F)$	$-N + \frac{N-1}{N+k+1}$	x
$(D_N^{2N-2}[k], F)$	$-(2N-2) + \frac{2N-2}{2N-2+k}$	О
$(D_N^N[k], F)$	$-(2N-2) + \frac{N}{N+k}$	x
$(E_6^{12}[k], F)$	$-12 + \frac{12}{k+12}$	О
$(E_6^9[k], F)$	$-12 + \frac{9}{k+9}$	x
$(E_6^8[k], F)$	$-12 + \frac{8}{k+8}$	x
$(E_7^{18}[k], F)$	$-18 + \frac{18}{k+18}$	О
$(E_7^{14}[k], F)$	$-18 + \frac{14}{k+14}$	x
$(E_8^{30}[k], F)$	$-30 + \frac{30}{k+30}$	О
$(E_8^{24}[k], F)$	$-30 + \frac{24}{k+24}$	x
$(E_8^{20}[k], F)$	$-24 + \frac{30}{k+24}$	x

Pirsa: 16100054 Page 19/29

AD theory $(J^b[k], F)$, Kac-Moody algebra J_{-k_F}

The Higgs branch is determined by the associated variety X of th Kac-Moody algebra J_{-k_F}

For $k_{2d}=-h+rac{p}{q},\ p\geq h,$ associated variety X is certain nilpotent orbit \bar{O}_q

Details see Arakawa[2015], Beem-Rastelli

In our case, for b=h, the Higgs branch is determined by the nilpotent orbit \bar{O}_q

theory	k_{2d}	admissible?
$(A_{N-1}^N[k], F)$	$-N + \frac{N}{N+k}$	О
$(A_{N-1}^{N-1}[k], F)$	$-N + \frac{N-1}{N+k+1}$	x
$(D_N^{2N-2}[k], F)$	$-(2N-2) + \frac{2N-2}{2N-2+k}$	О
$(D_N^N[k], F)$	$-(2N-2) + \frac{N}{N+k}$	x
$(E_6^{12}[k], F)$	$-12 + \frac{12}{k+12}$	О
$(E_6^9[k], F)$	$-12 + \frac{9}{k+9}$	x
$(E_6^8[k], F)$	$-12 + \frac{8}{k+8}$	x
$(E_7^{18}[k], F)$	$-18 + \frac{18}{k+18}$	О
$(E_7^{14}[k], F)$	$-18 + \frac{14}{k+14}$	x
$(E_8^{30}[k], F)$	$-30 + \frac{30}{k+30}$	О
$(E_8^{24}[k], F)$	$-30 + \frac{24}{k+24}$	x
$(E_8^{20}[k], F)$	$-24 + \frac{30}{k+24}$	X

Pirsa: 16100054 Page 20/29

AD theory $(J^b[k], F)$, Kac-Moody algebra J_{-k_F}

The Higgs branch is determined by the associated variety X of th Kac-Moody algebra J_{-k_F}

For $k_{2d}=-h+rac{p}{q},\ p\geq h,$ associated variety X is certain nilpotent orbit \bar{O}_q

Details see Arakawa[2015], Beem-Rastelli

In our case, for b=h, the Higgs branch is determined by the nilpotent orbit \bar{O}_q

theory	k_{2d}	admissible?
$A_{N-1}^{N}[k], F)$	$-N + \frac{N}{N+k}$	0
$(A_{N-1}^{N-1}[k], F)$	$-N + \frac{N-1}{N+k+1}$	x
$(D_N^{2N-2}[k], F)$	$-(2N-2) + \frac{2N-2}{2N-2+k}$	О
$(D_N^N[k], F)$	$-(2N-2) + \frac{N}{N+k}$	x
$(E_6^{12}[k], F)$	$-12 + \frac{12}{k+12}$	О
$(E_6^9[k], F)$	$-12 + \frac{9}{k+9}$	x
$(E_6^8[k], F)$	$-12 + \frac{8}{k+8}$	x
$(E_7^{18}[k], F)$	$-18 + \frac{18}{k+18}$	О
$(E_7^{14}[k], F)$	$-18 + \frac{14}{k+14}$	X
$(E_8^{30}[k], F)$	$-30 + \frac{30}{k+30}$	О
$(E_8^{24}[k], F)$	$-30 + \frac{24}{k+24}$	x
$(E_8^{20}[k], F)$	$-24 + \frac{30}{k+24}$	X

Pirsa: 16100054 Page 21/29

- Consider only full puncture F
- ▶ Classified by $(J^b[k], F)$
- Kac-Moody algebra A_{-kF}

$$A = J$$
, $c_{2d} = -\frac{k_F \dim A}{h - k_F} = -12 c_{4d}$

$$k_F = h - \frac{b}{b+k}$$

Schur index = vacuum character (Kac-Wakimoto)

$\frac{13(k+11)}{2}$	$\frac{12(k+11)}{k+12}$
$\frac{13}{6}(33+4k)$	$12 - \frac{9}{k+9}$
$\frac{13}{4}(22+3k)$	$12 - \frac{8}{k+8}$
$\frac{133}{12}(17+k)$	$\frac{18(k+17)}{k+18}$
$\frac{19}{12}(119+9k)$	$18 - \frac{14}{k+14}$
$\frac{62}{3}(29+k)$	$\frac{30(k+29)}{k+30}$
$\frac{31}{6}(116+5k)$	$30 - \frac{24}{k+24}$
$\frac{31}{3}(58+3k)$	$30 - \frac{20}{k+20}$
	$ \frac{13}{6}(33+4k) $ $ \frac{13}{4}(22+3k) $ $ \frac{133}{12}(17+k) $ $ \frac{19}{12}(119+9k) $ $ \frac{62}{3}(29+k) $ $ \frac{31}{6}(116+5k) $

Pirsa: 16100054 Page 22/29

AD theory $(J^b[k], F)$, Kac-Moody algebra J_{-k_F}

The Higgs branch is determined by the associated variety X of th Kac-Moody algebra J_{-k_F}

For $k_{2d}=-h+rac{p}{q},\ p\geq h,$ associated variety X is certain nilpotent orbit \bar{O}_q

Details see Arakawa[2015], Beem-Rastelli

In our case, for b=h, the Higgs branch is determined by the nilpotent orbit \bar{O}_q

theory	k_{2d}	admissible?
$(A_{N-1}^N[k], F)$	$-N + \frac{N}{N+k}$	О
$(A_{N-1}^{N-1}[k], F)$	$-N + \frac{N-1}{N+k+1}$	x
$(D_N^{2N-2}[k], F)$	$-(2N-2) + \frac{2N-2}{2N-2+k}$	О
$(D_N^N[k], F)$	$-(2N-2) + \frac{N}{N+k}$	x
$(E_6^{12}[k], F)$	$-12 + \frac{12}{k+12}$	О
$(E_6^9[k], F)$	$-12 + \frac{9}{k+9}$	x
$(E_6^8[k], F)$	$-12 + \frac{8}{k+8}$	x
$(E_7^{18}[k], F)$	$-18 + \frac{18}{k+18}$	О
$(E_7^{14}[k], F)$	$-18 + \frac{14}{k+14}$	x
$(E_8^{30}[k], F)$	$-30 + \frac{30}{k+30}$	О
$(E_8^{24}[k], F)$	$-30 + \frac{24}{k+24}$	x
$(E_8^{20}[k], F)$	$-24 + \frac{30}{k+24}$	x

Pirsa: 16100054 Page 23/29

$$For k_{2d} = -h + \frac{p}{q}, p \ge h$$

- q < h, nilpotent orbit is given by the table (Arakawa[2015])
- ▶ $q \ge h$, nilpotent orbit is just the principal nilpotent orbit \bar{O}_{prin}

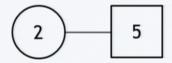
$$\int (J^h[k], F), k = -h + \frac{h}{h+k}$$

 $k \ge 0$, all AD theories have the same Higgs branch

g	q	O_q
sl_n	any	$(q, \dots, q, s), 0 \le s \le q - 1$
50 _{2n}	odd	$(q,, q, s), 0 \le s \le q,$ $s \ odd, number \ of \ q \ odd$ $(q,, q, s, 1), 0 \le s \le q - 1,$ $s \ odd, number \ of \ q \ even$
	even	$(q + 1, q,, q, s), 0 \le s \le q - 1,$ $s \ odd, number \ of \ q \ even$ $(q + 1, q,, q, q - 1, s, 1), 0 \le s \le q - 1,$ $s \ odd, number \ of \ q \ even$

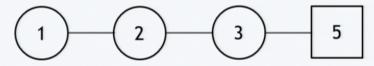
Pirsa: 16100054 Page 24/29

- ▶ $A_4^5[-3] = D_2[SU(5)]$, Kac-Moody algebra is $SU(5)_{-\frac{5}{2}}$, $k = -5 + \frac{5}{2}$, q = 2
 - Moment maps O in adjoint (24) rep of SU(5)
 - $O_{24+1}^2 = 0$ which is the Joseph relation of the chiral ring of Higgs branch
- ► The nilpotent orbit is given by (2,2,1)



▶ 2-instanton ADHM quiver for the gauge group SU(5)

- ► $A_4^5[-1]$, Kac-Moody algebra is $SU(5)_{-\frac{15}{4}}$, $k = -5 + \frac{5}{4}$, q = 4
- ► The nilpotent orbit is given by (4,1)



▶ The Higgs branch of the above quiver gives the nilpotent orbit

Summary

- Understand the BPS spectrum of AD theories using the index
 - Read off protected operators (current, Higgs branch operators...) and their relations
- Compute the index: chiral algebra vs. TQFT
 - ▶ AD theories without flavor symmetry: diagonal coset model
 - ▶ AD theoires with flavor symmetry: Kac-Moody algebra
 - Higgs branch = associated varieties of Kac-Moody algebra

Pirsa: 16100054 Page 27/29

Summary

- Understand the BPS spectrum of AD theories using the index
 - Read off protected operators (current, Higgs branch operators...) and their relations
- Compute the index: chiral algebra vs. TQFT
 - ▶ AD theories without flavor symmetry: diagonal coset model
 - ▶ AD theoires with flavor symmetry: Kac-Moody algebra
 - Higgs branch = associated varieties of Kac-Moody algebra

Pirsa: 16100054 Page 28/29

Future

- Generalization
 - Arbitrary puncture: Drinfeld-Sokolov reduction
 - Twisted case: AD⇒BC
- Beyond spectrum:
 - Correlation functions between BPS operators
 - Combining with bootstrap and more constraints on AD theories [LL15]
- ▶ Thank you

Pirsa: 16100054 Page 29/29