Title: Complexity and Holographic Fluctuations

Date: Oct 04, 2016 03:30 PM

URL: http://pirsa.org/16100037

Abstract: I discuss, from a quantum information perspective, recent proposals of Maldacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. I review the idea that the informational principle of minimal complexity determines a dual holographic bulk spacetime from a minimal quantum circuit U preparing a given boundary state from a trivial reference state. I describe how this idea may be extended to determine the relationship between the fluctuations of the bulk holographic geometry and the fluctuations of the boundary low-energy subspace. In this way we obtain, for every quantum system, an Einstein-like equation of motion for what might be interpreted as a bulk gravity theory dual to the boundary system. If time permits I will comment on the link to Brownian quantum circuits and tensor networks.

Pirsa: 16100037 Page 1/42

Bulk Fluctuations from Minimal Complexity

Wissam Chemissany

ITP/QI, Hannover

Perimeter Institute (PI)

October 4, 2016

October 4, 2016

Based on: arXiv:1605.07768 [W. C, T. J. Osborne] & work in progress with Hrant Gharibyan

Pirsa: 16100037

Maximizing the usefulness of the principle of minimal complexity

(D)

- The main motivation of this work is to discuss, from a QI perspective, recent proposals that spacetime is an *emergent* property of quantum entanglement.
- A proposal has been put forward to determine a dual holographic bulk spacetime from the informational principle of minimal complexity (PMC).
- \blacksquare The main ingredient of this proposal is a minimal quantum circuit U preparing a given boundary state from a trivial reference state.
- The powerfulness of (PMC) allows to determine the relationship between the *fluctuations* of the bulk geometry and the fluctuations of the boundary low-energy subspace.
- For every quantum system, one obtains an Einstein-like equation of motion for what might be interpreted a bulk gravity theory dual to the boundary system.

Pirsa: 16100037 Page 3/42

Discussed Proposals

87

- Found in recents works and talks of Raamsdonk, Swingle, Susskind, Brown, Roberts, Stanford..
- Core idea explored: the pattern of entanglement of a (boundary) state $|\psi\rangle$ of a collection of d.o.f (qubits) determines the bulk holographic spacetime via (PMC).
- A precise approach to associating a bulk geometry, as a topological space, with a quantum system comprised of a discrete collection of d.o.f.
- Introducing an action, building on the (PMC), to model fluctuations of the bulk holographic spacetime.

Pirsa: 16100037 Page 4/42

Outline

- Prerequisite Material and Preliminary Machinery
 - 2 Bulk Topology and Geometry from Geodesics in $SU(\mathcal{H})$
 - Bulk Holographic Geometry from Thermal Correlations
 - Bulk Holographic Geometry from Causal Sets
 - 3 Bulk Fluctuations from (PMC) and Action
 - Structure of Bulk Fluctuations
 - Links to Brownian Bridges
 - 4 Boundary Perturbations and Jacobi Fields
 - Examples
 - Application
 - 5 Conclusion and Outlook

Pirsa: 16100037 Page 5/42

Prerequisite Material and Preliminary Machinery

- Consider two different systems, namely the *bulk* \mathcal{M} and the *boundary* $\partial \mathcal{M}$.
- The boundary system (BS) $\partial \mathcal{M}$ is taken to be a quantum system comprised of n distinguishable subsystems. Ex:

$$n \ qubits, \qquad \mathcal{H} = \bigotimes_{j=1}^{n} \mathbb{C}^{2},$$
 (1)

$$qudits/H.O, \qquad \mathcal{H} = \bigotimes_{j=1}^{n} L^{2}(\mathbb{R})$$
 (2)

■ The bulk system is a "classical system", taken to be a topological space

$$(X, \mathcal{T}), \quad X \cong \{1, 2, \cdots, n\} \times \mathbb{R}^+.$$
 (3)

- The point set X corresponds to a partially discretized *holographic spacetime* with discrete boundary "spatial "coordinates and holographic direction $r \in \mathbb{R}^+$.
- The (BS) captures <u>all</u> of the <u>relevant</u> low-energy d.o.f of some <u>boundary</u> Hamiltonian $H \in \mathcal{B}(\mathcal{H})$.
- Example: if $H \geqslant 0$ is *gapped* with unique ground state then there is *one* relevant low-energy d.o.f., namely $|\Omega\rangle$, hence $\mathcal{H} \cong \mathbb{C}$.
- H are taken to be *local* w.r.t some finite simple graph $G \equiv (V, E)$:

$$V = vertex \ set, \qquad E = edge \ set$$
 (4)

representing respectively the n subsystems and interactions:

$$H = \sum_{j \sim k} h_{j,k} \tag{5}$$

Prerequisite Material and Preliminary Machinery

- States of the boundary \mathcal{H} may be specified in terms of a trivial reference basis: the *computational basis*.
- For our quantum spin system this is just the product basis

$$|x_1 x_2 \cdots x_n\rangle, \quad x_j \in \{0, 1\}, \quad j = 1, 2, \cdots, n.$$
 (6)

■ The boundary Hamiltonian determines a second basis via the unitary U diagonalizing H, i.e.,

$$U^{\dagger}HU = D, \qquad D \text{ diagonal}, \qquad U \in SU(\mathcal{H}) \cong SU(2^n).$$
 (7)

- Even if H is rather simple, e.g., G is a line graph, that U can be extremely difficult to determine in general (Osborne, 2012, Aharonov et al., 2013).
- The unitary U diagonalizing H is central: Its entangling structure determines an associated dual holographic bulk spacetime \mathcal{M} .
- This is done by by studying the quantum information complexity of U counting the number of nontrivial quantum gates required to synthesis U.
- A powerful method to precisely capture the complexity of unitary $U \in SU(\mathcal{H})$ was introduced by Nielsen and coauthors.

Prerequisite Material and Preliminary Machinery

- States of the boundary \mathcal{H} may be specified in terms of a trivial reference basis: the *computational basis*.
- For our quantum spin system this is just the product basis

$$|x_1 x_2 \cdots x_n\rangle, \quad x_j \in \{0, 1\}, \quad j = 1, 2, \cdots, n.$$
 (6)

■ The boundary Hamiltonian determines a second basis via the unitary U diagonalizing H, i.e.,

$$U^{\dagger}HU = D, \qquad D \text{ diagonal}, \qquad U \in SU(\mathcal{H}) \cong SU(2^n).$$
 (7)

- Even if H is rather simple, e.g., G is a line graph, that U can be extremely difficult to determine in general (Osborne, 2012, Aharonov et al., 2013).
- The unitary U diagonalizing H is central: Its entangling structure determines an associated dual holographic bulk spacetime \mathcal{M} .
- This is done by by studying the quantum information complexity of U counting the number of nontrivial quantum gates required to synthesis U.
- A powerful method to precisely capture the complexity of unitary $U \in SU(\mathcal{H})$ was introduced by Nielsen and coauthors.

Geometric Complexity à la Nielsen

 \blacksquare Fo certain specific metrics on the tangent space at U

$$\langle \cdot, \cdot \rangle_U : T_U SU(\mathcal{H}) \times T_U SU(\mathcal{H}) \to \mathbb{R},$$
 (8)

the *geodesic length* $C(U) \equiv d(I, U)$ as an appropriate measure, where

$$d(I,U) \equiv \inf_{\gamma} \int \sqrt{\langle K(r), K(r) \rangle} dr, \tag{9}$$

■ Via integration of Schrödinger eq. one has

$$\partial_r \gamma(r) = -iK(r)\gamma(r), \quad \text{that} \quad \gamma(0) = I, \quad \gamma(R) = U, \quad R \in \mathbb{R}^+.$$
 (10)

- All the metrics are taken to be right-invariant: $T_I SU(\mathcal{H}) \sim T_U SU(\mathcal{H})$, i.e., $iK \rightarrow -iKU$ where $-iK \in \mathfrak{su}(\mathcal{H})$.
- One particular family of metrics plays a key role, namely

$$\langle A, B \rangle_p \equiv \frac{1}{\dim(2^n)} \operatorname{tr} \left(D_p^{\otimes n} (A^{\dagger}) D_p^{\otimes n} (B) \right).$$
 (11)

where

$$D_p(X) = (1 - p)\operatorname{tr}(X)\frac{I}{2} + pX, \quad \text{with } p \in \mathbb{R}^+.$$
 (12)

■ For p = 1 this reduces to $\langle A, B \rangle \equiv \frac{1}{\dim(\mathcal{H})} \operatorname{tr}(A^{\dagger}B)$.

Geometric Complexity à la Nielsen

 \blacksquare Fo certain specific metrics on the tangent space at U

$$\langle \cdot, \cdot \rangle_U : T_U SU(\mathcal{H}) \times T_U SU(\mathcal{H}) \to \mathbb{R},$$
 (8)

the *geodesic length* $C(U) \equiv d(I, U)$ as an appropriate measure, where

$$d(I,U) \equiv \inf_{\gamma} \int \sqrt{\langle K(r), K(r) \rangle} dr, \tag{9}$$

■ Via integration of Schrödinger eq. one has

$$\partial_r \gamma(r) = -iK(r)\gamma(r), \quad \text{that} \quad \gamma(0) = I, \quad \gamma(R) = U, \quad R \in \mathbb{R}^+.$$
 (10)

- All the metrics are taken to be right-invariant: $T_I SU(\mathcal{H}) \sim T_U SU(\mathcal{H})$, i.e., $iK \rightarrow -iKU$ where $-iK \in \mathfrak{su}(\mathcal{H})$.
- One particular family of metrics plays a key role, namely

$$\langle A, B \rangle_p \equiv \frac{1}{\dim(2^n)} \operatorname{tr} \left(D_p^{\otimes n} (A^{\dagger}) D_p^{\otimes n} (B) \right).$$
 (11)

where

$$D_p(X) = (1 - p)\operatorname{tr}(X)\frac{I}{2} + pX, \quad \text{with } p \in \mathbb{R}^+.$$
 (12)

■ For p = 1 this reduces to $\langle A, B \rangle \equiv \frac{1}{\dim(\mathcal{H})} \operatorname{tr}(A^{\dagger}B)$.

Geometric Complexity à la Nielsen

lacktriangle Fo certain specific metrics on the tangent space at U

$$\langle \cdot, \cdot \rangle_U : T_U SU(\mathcal{H}) \times T_U SU(\mathcal{H}) \to \mathbb{R},$$
 (8)

the *geodesic length* $C(U) \equiv d(I, U)$ as an appropriate measure, where

$$d(I,U) \equiv \inf_{\gamma} \int \sqrt{\langle K(r), K(r) \rangle} dr, \tag{9}$$

■ Via integration of Schrödinger eq. one has

$$\partial_r \gamma(r) = -iK(r)\gamma(r), \quad \text{that} \quad \gamma(0) = I, \quad \gamma(R) = U, \quad R \in \mathbb{R}^+.$$
 (10)

- All the metrics are taken to be right-invariant: $T_I SU(\mathcal{H}) \sim T_U SU(\mathcal{H})$, i.e., $iK \rightarrow -iKU$ where $-iK \in \mathfrak{su}(\mathcal{H})$.
- One particular family of metrics plays a key role, namely

$$\langle A, B \rangle_p \equiv \frac{1}{\dim(2^n)} \operatorname{tr} \left(D_p^{\otimes n} (A^{\dagger}) D_p^{\otimes n} (B) \right).$$
 (11)

where

$$D_p(X) = (1-p)\operatorname{tr}(X)\frac{I}{2} + pX, \quad \text{with } p \in \mathbb{R}^+.$$
 (12)

■ For p = 1 this reduces to $\langle A, B \rangle \equiv \frac{1}{\dim(\mathcal{H})} \operatorname{tr}(A^{\dagger}B)$.

Euler-Arnol'd Equation

- As $p \to \infty$, d(I, U) admits the pleasing operational interpretation as the minimal number of quantum gates required to (approximately) implement U as a QC.
- The vector field -iK(r) associated with the geodesic flow $\gamma(r)$ satisfies the *Eruler-Arnol'd equation*

$$-\frac{dK(r)}{dr} = B_p(-K(r), -iK(r)), \tag{13}$$

where $B_p(\cdot,\cdot)$ determined by $\langle [X,Y],Z\rangle_p \equiv \langle B(Z,Y),X\rangle_p, \forall X,Y,Z\in\mathfrak{su}(\mathcal{H}).$

■ Special case: p = 1 and when U is sufficiently close to I, i.e., I and U are not conjugate points of $SU(\mathcal{H})$, then

$$\gamma(r) \equiv e^{-iKr},\tag{14}$$

where $K \equiv i \log(U) = const.$.

- Nielsen's complexity measure: a central tool to determine holographic space \mathcal{M} from a *state* $|\psi\rangle$ of $\partial\mathcal{M}$.
- The idea/recipe:
 - (i) Take as input $|\psi\rangle \in \mathcal{H}$.
 - (ii) Find the unitary U of minimal compexity C(U) which prepares $|\psi\rangle$ from the trivial initial state $|00\cdots 0\rangle$, i.e.,

$$U|00\cdots 0\rangle = |\psi\rangle. \tag{15}$$

(iii) Now, assuming that the infimum may be *achieved* by the geodesic $\gamma(r)$ with -iK(r):

$$U \equiv \mathcal{T}e^{-i\int_0^R K(r)dr},\tag{16}$$

Quantum Circuit $V \approx U$

This may be approximated by discretization: find a quantum circuit

$$V \equiv V_T V_{T-1} \cdots V_1, \qquad V_j, \quad j = 1, 2, \cdots T, \tag{17}$$

are 1 or 2-qubit *quantum gates* such that $V \approx U$:

(T)

Bulk Topology and Geometry from Geodesics in $SU(\mathcal{H})$

ED)

■ Let γ be a path connecting I to U in $SU(\mathcal{H})$

$$\gamma \equiv \mathcal{T}e^{-i\int_0^R K(r)dr}, \qquad K(r) \in \mathcal{B}(\mathcal{H})$$
 (19)

- How can one interpret the matrix K(r)?
 - The matrix K(r) may be regarded as a time-dependent Hamiltonian acting on $\partial \mathcal{M}$:

$$K(r) = \sum_{I \subset \{1, 2, \dots, n\}} k_I(r),$$
(20)

- $k_I(r)$ is an operator acting nontrivially only on subsystems in the subset I.
- For the considered metrics, all possible subsets *I* can appear, and there are exponentially many interaction terms.
- K(r) is generically a strongly interacting quantum spin system.
- Goal: associate a topological space to K(r) for each *instantaneous holographic time slice* $r \in [0, R]$.
- How to do this?

Bulk Topology and Geometry from Geodesics in $SU(\mathcal{H})$

ED)

■ Let γ be a path connecting I to U in $SU(\mathcal{H})$

$$\gamma \equiv \mathcal{T}e^{-i\int_0^R K(r)dr}, \qquad K(r) \in \mathcal{B}(\mathcal{H})$$
 (19)

- How can one interpret the matrix K(r)?
 - The matrix K(r) may be regarded as a time-dependent Hamiltonian acting on $\partial \mathcal{M}$:

$$K(r) = \sum_{I \subset \{1, 2, \dots, n\}} k_I(r),$$
(20)

- $k_I(r)$ is an operator acting nontrivially only on subsystems in the subset I.
- For the considered metrics, all possible subsets *I* can appear, and there are exponentially many interaction terms.
- K(r) is generically a strongly interacting quantum spin system.
- Goal: associate a topological space to K(r) for each *instantaneous holographic time slice* $r \in [0, R]$.
- How to do this?

Many Operationally Meaningful Ways

It depends on the physical questions one asks!

Approach I

- To interpret K(r) as a *free-particle Hamiltonian* for some possibly very complicated configuration space \mathcal{X} .
- Building \mathcal{X} by matching the dispersion relation of the localized excitations of K(r) to that of free-particle Hamiltonian on \mathcal{X} .

Approach II

- To study the response of high temperature states $\rho_{\beta}(r)$, with β small to localized perturbations A and B at different sites:
- At zero inverse temperature $\beta = 0$ all perturbations on different sites will be completely uncorrelated.
- However, when β is small there are residual correlations between nearby sites allowing us to say when two sites are close.
- While somewhat indirect, this approach has the considerable upside that it immediately leads to a positive-definite metric.

Pirsa: 16100037 Page 16/42

Many Operationally Meaningful Ways

Approach III

- Studying the propagation of a localized perturbation A at some site j according to the Schrödinger time evolution determined by K(r).
- \blacksquare And assuming a Lieb-Robinson type bound on the dynamics of K(r)

$$||A(\tau), B|| \le Ce^{v|\tau| - d(j,k)} ||A|| \, ||B||.$$
 (21)

- Such a bound can be used to infer a *pseudo-Riemannian* type structure via a *causality* relation on the set $\{1, 2, \dots, n\} \times \mathbb{R}^+$.
- Such a relation can, in turn, be quantified in terms of a *causal set* leading to an embedding in a Lorentz manifold.
- Another approach...
- Approaches II and III maybe regarded as a Wick-rotated "Euclidean approach" and "Lorentzian approach", respectively to the problem of building bulk holographic spacetimes.

Pirsa: 16100037 Page 17/42

(B

- A quantum system of n quantum spins $\{1, 2, \dots, n\}$ with Hamiltonian K(r) is brought into thermal equilibrium at β .
- The state of the system is described by the Gibbs ensemble

$$\rho_{\beta} = \frac{e^{-\beta K(r)}}{\operatorname{tr}(e^{-\beta K(r)})} \tag{22}$$

- Consider the effect of a small perturbation $A \in \mathfrak{su}(\mathcal{H})$ localized at site j and B at site k.
- The resulting system state is

$$\rho_{\beta}(r) + \epsilon X \approx \frac{e^{-\beta K(r) + i\epsilon A}}{\operatorname{tr}(e^{-\beta K(r)})}, \qquad \rho_{\beta}(r) + \epsilon Y \approx \frac{e^{-\beta K(r) + i\epsilon B}}{\operatorname{tr}(e^{-\beta K(r)})}.$$
(23)

- How distinguishable is the perturbed state $\rho_{\beta}(r) + \epsilon X$ from the state $\rho_{\beta}(r) + \epsilon Y$?
- A at site j is close, or adjacent, to B local to site k if the states $\rho_{\beta}(r) + \epsilon X$ and $\rho_{\beta}(r) + \epsilon Y$ are not completely distinguishable.

- Does this notion correspond to a topological/geometrical conception of closeness?
- Near the infinite-temperature fixed point $\rho \propto I$, all the correlations are disordered by thermal fluctuations.
- The effects of a local perturbation are delocalized only in a small surrounding region determined by the high-temperature correlation length depending on β .
- If $\rho_{\beta}(r) + \epsilon X$ and $\rho_{\beta}(r) + \epsilon Y$ are independent fluctuations (uncorrelated), A is far from B.
- This region, in turn, determines the desired adjacency for the site j and k, which supplies us with a metric quantity.
- Distinguishability, as measured by the relative entropy $S(\cdot||\cdot)$, of $\rho_{\beta}(r) + \epsilon X$ and $\rho_{\beta}(r) + \epsilon Y$ is quantified to $O(\epsilon)$ by

$$\langle A, B \rangle_{\rho_{\beta}(r)} \equiv -\frac{\partial^2}{\partial x \partial y} F(x, y)|_{x=y=0},$$
 (24)

$$F(x,y) = -\frac{1}{\beta} \log \left(\operatorname{tr} \left(e^{-\beta K(r) + ixA + iyB} \right) \right)$$
 (25)

is the free energy (Bény & Osborne, 2015).

■ This idea has also been exploited in various incarnations (Ryu & Takayanagi 2012; Qi 2013).

- Rather fortuitously, the $\langle \cdot, \cdot \rangle_{\rho_{\beta}(r)}$ is a positive definite *inner product* on the space of local operators.
- Additionally, it is equal to the following two-point thermal correlation function

$$\langle A, B \rangle_{\rho_{\beta}(r)} \equiv \frac{1}{\beta} \int_{0}^{\beta} \operatorname{tr} \left(\rho_{\beta}(r) e^{uK(r)} B e^{-uK(r)} A \right) du.$$
 (26)

It will determine an adjacency relation between the sites.

0

 \blacksquare When β is infinitesimal the two-point thermal correlation function is given

$$\langle A, B \rangle_{\rho_{\beta}(r)} \approx \frac{1}{2^n} \operatorname{tr}(AB) - \frac{\beta}{2^{n+1}} \operatorname{tr}\left(A\{K(r), B\}\right) + O(\beta^2).$$
 (27)

However, the high-temperature two-point correlation functions are exponentially decaying for β small (Hastings 2006: Kliesch et al. 2014):

$$|\langle A, B \rangle_{\rho_{\beta}(r)}| \lesssim e^{\frac{-d(j,k)}{\xi(\beta)}} ||A|| ||B||, \tag{28}$$

■ Generically, the high temperature correlation length tends to zero like $\xi(\beta) \propto \beta$ as $\beta \to 0$.

Pirsa: 16100037 Page 20/42

- Thus, if $\langle A, B \rangle_{\rho_{\beta}(r)}$ is nonzero for β infinitesimal when $j \neq k$ this means that d(j,k) must be arbitrarily small, i.e., j and k are adjacent.
 - Our task is thus to extract a distance measure or metric, d(j,k) from $\langle A,B\rangle_{\rho_{\beta}(r)}$.
 - How to do this?
 - One direct way is simply to take a log

$$d(j,k) \stackrel{!}{\equiv} \sup_{A,B} -\beta \log \frac{|\langle A,B \rangle_{\rho_{\beta}(r)}|}{||A||||B||}, \qquad j \neq k,$$
 (29)

being similar to (Qi 2013).

■ It is not clear if d(j, k) so defined satisfies the triangle inequality

$$d(j,l) \le d(j,k) + d(k,l). \tag{30}$$

- A way around this is use d(j, k) only to define an adjacency relation between pair of spins (j, k).
- Then use the adjacency relation to build a metric. What does this mean?
- First set up the adjacency matrix

$$A_{j,k} = \sup_{A,B} -\beta \log \frac{|\langle A, B \rangle_{\rho_{\beta}(r)}|}{||A||||B||}, \qquad j \neq k.$$
(31)

lacksquare $A_{j,k}$ defines a weighted graph structure G(V,E) on the vertex set

$$V = \{1, 2, \cdots, n\}. \tag{32}$$

lacksquare For any pair of points j and k in G, the distance between j and k is defined as the length of the shortest path

$$p = (e_1, e_2, \dots, e_m), \quad \text{and } e_l = (x_l, y_l)$$
 (33)

are edges, between j and k.

■ This is guaranteed to obey the triangle inequality. Thus the metric is defined as

$$d(j,k) = \inf \left\{ \sum_{x,y \in p} A_{(x,y)} \middle| \text{p is a path from } j \text{ to } k \right\}$$
 (34)

- This is difficult to compute in general.
- Computable approximation
 - If the term

$$\operatorname{tr}(A\{K(r), B\}) \lesssim e^{-\frac{1}{\beta}},\tag{35}$$

for all A and B in $\langle A, B \rangle_{\rho_B(r)}$ expanded to first order, then j and k are not adjacent.

 $\blacksquare A_{j,k}$ defines a weighted graph structure G(V,E) on the vertex set

$$V = \{1, 2, \cdots, n\}. \tag{32}$$

lacksquare For any pair of points j and k in G, the distance between j and k is defined as the length of the shortest path

$$p = (e_1, e_2, \dots, e_m), \quad \text{and } e_l = (x_l, y_l)$$
 (33)

are edges, between j and k.

■ This is guaranteed to obey the triangle inequality. Thus the metric is defined as

$$d(j,k) = \inf \left\{ \sum_{x,y \in p} A_{(x,y)} \middle| \text{p is a path from } j \text{ to } k \right\}$$
 (34)

- This is difficult to compute in general.
- Computable approximation
 - If the term

$$\operatorname{tr}(A\{K(r), B\}) \lesssim e^{-\frac{1}{\beta}},\tag{35}$$

for all A and B in $\langle A, B \rangle_{\rho_B(r)}$ expanded to first order, then j and k are not adjacent.

■ Computable approximation

 \blacksquare if, however, there are local operators A at j and B at k such that for β infinitesimal

$$\langle A, B \rangle_{\rho_{\beta}(r)} \gg e^{-\frac{1}{\beta}},$$
 (36)

then j and k are adjacent.

- Restriction to hamiltonians K(r) comprised of only one- and two-particle interaction terms $k_{j,k}(r)$ (case when $p \to \infty$).
- Then to the first order in β this is equivalent to asking if there are traceless A at j and B at k such that

$$\operatorname{tr}(A\{K(r), B\}) \neq 0, \tag{37}$$

namely, j is adjacent to k if the two-particle interaction term $k_{j,k}(r)$ in K(r) is nonzero.

- Physically this is equivalent to: j and k are adjacent if at time r an (infinitesimal) quantum gate was applied coupling j and k.
- When K is comprised of three-particle or higher interactions, one needs to go to higher orders in β to determine the adjacency.
- Taking the product of the metric topology determined by $d(\cdot, \cdot)$ for each r provides the desired bulk topological space \mathcal{M} .

Pirsa: 16100037

■ Computable approximation

 \blacksquare if, however, there are local operators A at j and B at k such that for β infinitesimal

$$\langle A, B \rangle_{\rho_{\beta}(r)} \gg e^{-\frac{1}{\beta}},$$
 (36)

then j and k are adjacent.

- Restriction to hamiltonians K(r) comprised of only one- and two-particle interaction terms $k_{j,k}(r)$ (case when $p \to \infty$).
- Then to the first order in β this is equivalent to asking if there are traceless A at j and B at k such that

$$\operatorname{tr}(A\{K(r), B\}) \neq 0, \tag{37}$$

namely, j is adjacent to k if the two-particle interaction term $k_{j,k}(r)$ in K(r) is nonzero.

- Physically this is equivalent to: j and k are adjacent if at time r an (infinitesimal) quantum gate was applied coupling j and k.
- When K is comprised of three-particle or higher interactions, one needs to go to higher orders in β to determine the adjacency.
- Taking the product of the metric topology determined by $d(\cdot, \cdot)$ for each r provides the desired bulk topological space \mathcal{M} .

Bulk Holographic Geometry from Causal Sets

ED)

- The metric topology space does not capture an important aspect of quantum circuits comprised of local gates, namely, their *causal structure*.
- In every quantum circuit there is a kind of "light cone" of information propagation.
- A qubit j is said to be in the *past* of qubit k if there is a sequence of quantum gates in the circuit connecting j to k.
- Because the geodesics γ in $SU(\mathcal{H})$ obtained via (PMC) are generated by essentially local gates we should actually rather associate some kind of discretized *pseudo-Riemannian* manidold to the bulk holographic spacetime.
- In other words, it is rather more natural to think of \mathcal{M} as a de Sitter-type (Bény 2013, Czech et al. 2015).
- One should regard the previous approach as the Wick-rotated Euclidean version of this approach.

Pirsa: 16100037 Page 26/42

Bulk Fluctuations from (PMC) and Action

■ The energy functional determining the geodesic γ is

 $E(\gamma) \equiv \frac{1}{2} \int_{0}^{T} \langle \dot{\gamma}, \dot{\gamma} \rangle_{\gamma} dt \tag{46}$

- This quantity is minimised precisely on geodesic γ achieving d(I, U).
- A fluctuation

$$\gamma' = \gamma + d\gamma \tag{47}$$

should therefore be a path in $SU(\mathcal{H})$ having a near-minimal energy.

- Perturbation γ of γ' can also be interpreted as *fluctuations* in the bulk geometry.
- \blacksquare Imagine the paths γ arise from a *quantum system*, It is natural to introduce

$$\mathcal{Z}_B \equiv \int D\gamma e^{-\beta E(\gamma)} \tag{48}$$

to model the fluctuations.

- Fluctuations γ' are determined by the Gibbs distribution.
- \mathcal{Z}_B can be understood as that for a string with target space $SU(\mathcal{H})$ with fixed endpoints at I and U.

Pirsa: 16100037

Bulk Fluctuations from (PMC) and Action

■ The energy functional determining the geodesic γ is

$$E(\gamma) \equiv \frac{1}{2} \int_0^T \langle \dot{\gamma}, \dot{\gamma} \rangle_{\gamma} dt \tag{46}$$

- This quantity is minimised precisely on geodesic γ achieving d(I, U).
- A fluctuation

$$\gamma' = \gamma + d\gamma \tag{47}$$

should therefore be a path in $SU(\mathcal{H})$ having a near-minimal energy.

- Perturbation γ of γ' can also be interpreted as *fluctuations* in the bulk geometry.
- \blacksquare Imagine the paths γ arise from a *quantum system*, It is natural to introduce

$$\mathcal{Z}_B \equiv \int D\gamma e^{-\beta E(\gamma)} \tag{48}$$

to model the fluctuations.

- Fluctuations γ' are determined by the Gibbs distribution.
- \blacksquare \mathcal{Z}_B can be understood as that for a string with target space $SU(\mathcal{H})$ with fixed endpoints at I and U.

Pirsa: 16100037

What is the structure of a fluctuation?

€0

- The energy $E(\gamma)$ is only sensitive to the presence of *quantum gates* between pairs of spins.
- It is not sensitive to *which* spins j and k the gate is applied to.
- The structure of near-minimal fluctuations of a geodesic are equal to $\gamma(t) \ \forall t$ except at one instant $t = t_{\omega}$.
- At t_{ω} a unitary gate $V_{j,k}$ is applied to an arbitrary pair (j,k) followed immediately by $V_{j,k}^{\dagger}$.
- Such a geodesic corresponds to

Bulk holographic spacetime = minimal one except with a "wormhole" at t_{ω}

- Such a wormhole immediately evaporates.
- The fluctuating bulk geometry determined by \mathcal{Z}_B is comprised of spacetimes where wormholes are fluctuating in and out of existence between all pairs (j, k) of points.

Pirsa: 16100037 Page 29/42

Brownian Motions on $SU(\mathcal{H})$

8M)

- The path integral \mathcal{Z}_B is remarkably simple; it is quadratic in -iK(r).
- $D\gamma e^{-\beta E(\gamma)}$ may hence be understood as a Brownian measure on paths in $SU(\mathcal{H})$ generated by 2-local tangent vectors (Lashkari et al. 2011).
- In the $p \to \infty$ limit each path $\gamma(t)$ solves (SDE)

$$d\gamma(t) \propto i \sum_{j \neq k}^{n} \sum_{\alpha_k = 0}^{3} \sigma_j^{\alpha^j} \otimes \sigma_k^{\alpha_k} \gamma(t) dB_{\alpha_j \alpha_k}(t) - \frac{1}{2} \gamma(t) dt. \tag{49}$$

- What makes \mathcal{Z}_B nontrivial is the constraint that the endpoints of the path are exactly I and U, turning \mathcal{Z}_B into integral over Brownian Bridges (Lévy et al. 2015).
- Bulk fluctuations are interpreted as a very complicated random variable $g \equiv g(U)$ which depends in a rather nonlinear way on the realization U of the Brownian bridge.
- Comment: The proposal of \mathcal{Z}_B essentially promotes the CA argument to a definition:

The action $E(\gamma)$ is directly related to the complexity d(I,U) in exactly the same way the energy of a geodesic is related to the geodesic length in Riemannian geometry, i.e., the minima of both quantities coincide.

Brownian Motions on $SU(\mathcal{H})$

8M)

- The path integral \mathcal{Z}_B is remarkably simple; it is quadratic in -iK(r).
- $D\gamma e^{-\beta E(\gamma)}$ may hence be understood as a Brownian measure on paths in $SU(\mathcal{H})$ generated by 2-local tangent vectors (Lashkari et al. 2011).
- In the $p \to \infty$ limit each path $\gamma(t)$ solves (SDE)

$$d\gamma(t) \propto i \sum_{j \neq k}^{n} \sum_{\alpha_k = 0}^{3} \sigma_j^{\alpha^j} \otimes \sigma_k^{\alpha_k} \gamma(t) dB_{\alpha_j \alpha_k}(t) - \frac{1}{2} \gamma(t) dt. \tag{49}$$

- What makes \mathcal{Z}_B nontrivial is the constraint that the endpoints of the path are exactly I and U, turning \mathcal{Z}_B into integral over Brownian Bridges (Lévy et al. 2015).
- Bulk fluctuations are interpreted as a very complicated random variable $g \equiv g(U)$ which depends in a rather nonlinear way on the realization U of the Brownian bridge.
- Comment: The proposal of \mathcal{Z}_B essentially promotes the CA argument to a definition:

The action $E(\gamma)$ is directly related to the complexity d(I,U) in exactly the same way the energy of a geodesic is related to the geodesic length in Riemannian geometry, i.e., the minima of both quantities coincide.

Brownian Motions on $SU(\mathcal{H})$

8M)

- The path integral \mathcal{Z}_B is remarkably simple; it is quadratic in -iK(r).
- $D\gamma e^{-\beta E(\gamma)}$ may hence be understood as a Brownian measure on paths in $SU(\mathcal{H})$ generated by 2-local tangent vectors (Lashkari et al. 2011).
- In the $p \to \infty$ limit each path $\gamma(t)$ solves (SDE)

$$d\gamma(t) \propto i \sum_{j \neq k}^{n} \sum_{\alpha_k = 0}^{3} \sigma_j^{\alpha^j} \otimes \sigma_k^{\alpha_k} \gamma(t) dB_{\alpha_j \alpha_k}(t) - \frac{1}{2} \gamma(t) dt. \tag{49}$$

- What makes \mathcal{Z}_B nontrivial is the constraint that the endpoints of the path are exactly I and U, turning \mathcal{Z}_B into integral over Brownian Bridges (Lévy et al. 2015).
- Bulk fluctuations are interpreted as a very complicated random variable $g \equiv g(U)$ which depends in a rather nonlinear way on the realization U of the Brownian bridge.
- Comment: The proposal of \mathcal{Z}_B essentially promotes the CA argument to a definition:

The action $E(\gamma)$ is directly related to the complexity d(I,U) in exactly the same way the energy of a geodesic is related to the geodesic length in Riemannian geometry, i.e., the minima of both quantities coincide.

Boundary Perturbations and Jacobi Fields

- The (PMC) already determines an EOM constraining the structure of the induced bulk fluctuations.
- This equation could be understood as a kind of generalized Einstein equation.

 \blacksquare Model the perturbation of the unitary U, i.e., study perturbed unitaries:

$$U' = U + dU \tag{50}$$

- Two natural sources:
 - (i) Arising from the presence of *local external fields*, J

$$H(s,J) = H + s \sum_{j=1}^{n} \sum_{\alpha=1}^{3} J_{\alpha}^{j} \sigma_{j}^{\alpha}, \tag{51}$$

Jacobi Equation

 \blacksquare A shift in $\gamma(r)$ corresponds to a shift

$$\mathcal{M} \to \mathcal{M} + d\mathcal{M},$$
 (57)

in the holographic space.

- Capturing the structure of the bulk holographic spacetime with a (metric) topology, we observe a shift in the topology \mathcal{T} on the point set X.
- The first order shift $\partial_s \gamma(r,s)$ in $\gamma(r)$ satisfies the *Jacobi equation*

$$\partial_r^2 Y = B_p(\partial_r Y + [X, Y], X) + B_p(X, \partial_r Y + [X, Y]) - [B_p(X, X), Y] + + [X, \partial_r Y],$$
(58)

$$X \equiv (\partial_r \gamma) \gamma^{-1}$$
 and $Y \equiv (\partial_s \gamma) \gamma^{-1}$.

- The Jacobi equation may be naturally regarded as a kind of "Einstein equation" constraining the dynamics of the bulk geometrical fluctuations.
- The vector field Y capturing the bulk geometrical fluctuation $d\mathcal{M}$ is directly a function of the external boundary field J_{α}^{j} .
- This allows us to deduce a precise bulk/boundary correspondence. This observation is the main contribution of this part.

Pirsa: 16100037

Jacobi Equation

 \blacksquare A shift in $\gamma(r)$ corresponds to a shift

$$\mathcal{M} \to \mathcal{M} + d\mathcal{M},$$
 (57)

in the holographic space.

- Capturing the structure of the bulk holographic spacetime with a (metric) topology, we observe a shift in the topology \mathcal{T} on the point set X.
- The first order shift $\partial_s \gamma(r,s)$ in $\gamma(r)$ satisfies the *Jacobi equation*

$$\partial_r^2 Y = B_p(\partial_r Y + [X, Y], X) + B_p(X, \partial_r Y + [X, Y]) - [B_p(X, X), Y] + + [X, \partial_r Y],$$
(58)

$$X \equiv (\partial_r \gamma) \gamma^{-1}$$
 and $Y \equiv (\partial_s \gamma) \gamma^{-1}$.

- The Jacobi equation may be naturally regarded as a kind of "Einstein equation" constraining the dynamics of the bulk geometrical fluctuations.
- The vector field Y capturing the bulk geometrical fluctuation $d\mathcal{M}$ is directly a function of the external boundary field J_{α}^{j} .
- This allows us to deduce a precise bulk/boundary correspondence. This observation is the main contribution of this part.

Pirsa: 16100037

Solvable Examples

(D)

- For arbitrary local H, It is very hard to say anything nontrivial about the structure of U(J), and hence Y.
- lacktriangle Our general conclusions concerning the properties of the fluctuation field Y are consequently limited.
- Example I: The boundary system is trivial (noninteracting), i.e.,

$$H = \sum_{j=1}^{n} \sigma_j^z. \tag{59}$$

- In this case $C_p(U) = 0$ for all p.
- The holographic time direction collapses to a point set.
- The associated holographic geometry is also trivial, corresponding to a set of n completely disconnected bulk universes.
- The fluctuations are also structureless as all different pairs of sites $j \neq k$ fluctuate independently.
- This corresponds to spontaneous creation and annihilation of wormholes between all pairs of sites.

Example II

(I)

■ Trvial example I and Boundary Fluctuation : a pair (j, k) of boundary spins is spontaneously entangled

$$H \to V_{j,k}^{\dagger} H V_{j,k} \tag{60}$$

■ $V_{j,k}$ is a near-identity operation entangling spins j and k. For example, take

$$V_{j,k} = e^{-i\epsilon\sigma_j^x \sigma_k^x}. (61)$$

Thus H fluctuates to

$$H' \equiv H + i\epsilon \left(\sigma_j^y \sigma_k^x + \sigma_j^x \sigma_k^y\right) \tag{62}$$

- By construction the unitary U' diagonalising H' is simply

$$U' = V_{j,k} = I - i\epsilon\sigma_j^x \sigma_k^x. \tag{63}$$

- The new geodesic γ' connecting I to U'

$$\gamma'(r) \equiv e^{-ir\sigma_j^x \sigma_k^x}. (64)$$

- Causal structure of bulk fluctuations: sites j and k become causally connected while the remaining sites remain causally disconnected.

Example III

- \blacksquare Consider unitaries of the form: $U=e^{i\tau L}$ with $L\in\mathcal{B}(\mathcal{H})$ a local generator.
 - Dynamics of *quenched systems*:
 - lacktriangleright The hamiltonian of the boundary quantum system is suddenly changed from some initial H to a new hamiltonian L.
 - It has been argued that such dynamics are dual to Einstein-Rosen bridges supported by localised shock waves (Roberts, Stanford & Susskind 2015).
 - lacksquare Solving the Euler-Arnol'd equation, as long as I and U are not conjugate points, one finds

$$\gamma(r) \equiv e^{irL}, \quad r \in [0, \tau], \quad \text{and} \quad -iK(r) = L = Const.$$
 (65)

- Consider now a fluctuation of the form $U' = e^{isM}U$ with M local to a pair (j,k) of sites.
- This represents a nonlocal entangled pair of particles fluctuating into existence at sites j and k just after the quench.
- One can completely solve the Jacobi equation to yield the (constant) vector field Y:

$$-iY(r) = \int_0^\infty \frac{I}{U+uI} M \frac{U}{U+uI} du \tag{66}$$

Conclusion and Outlook

Outlook:

ET?

- The (PMC) is strongly reminiscent of the principle of least action (PLA): indeed, we promoted it per definition to a (PLA) to obtain a model for the bulk holographic spacetime fluctuations.
- It is an intriguing question whether there is a deeper connection between the (PMC) and Kolmogorov complexity (Soklakov, 2002), and similarly, between fluctuations and Solomonoff induction.

Questions

- Should we give in to temptation and interpret the partition function as a quantum gravity theory?
- Does this theory enjoy any kind of diffeomorphism invariance?
- As it is a theory of strings in ridiculously high-dimensional space $(SU(\mathcal{H}))$, can it be related to string theory proper, or is this a mirage?
- It is vitally important to study the continuum limit following (Osborne & Milsted, 2016). The resulting bulk spacetime for CFTs should converge to AdS.
- Tensor networks should emerge as (alomost) geodesics. Perfect tensor and random tensor models & EHM of Qi are most natural candidates.
- Looking deeper at more examples including, more general lattice models and models of black holes, shockwaves, and beyond.

Pirsa: 16100037 Page 41/42

Conclusion and Outlook

Outlook:

ET?

- The (PMC) is strongly reminiscent of the principle of least action (PLA): indeed, we promoted it per definition to a (PLA) to obtain a model for the bulk holographic spacetime fluctuations.
- It is an intriguing question whether there is a deeper connection between the (PMC) and Kolmogorov complexity (Soklakov, 2002), and similarly, between fluctuations and Solomonoff induction.

Questions

- Should we give in to temptation and interpret the partition function as a quantum gravity theory?
- Does this theory enjoy any kind of diffeomorphism invariance?
- As it is a theory of strings in ridiculously high-dimensional space $(SU(\mathcal{H}))$, can it be related to string theory proper, or is this a mirage?
- It is vitally important to study the continuum limit following (Osborne & Milsted, 2016). The resulting bulk spacetime for CFTs should converge to AdS.
- Tensor networks should emerge as (alomost) geodesics. Perfect tensor and random tensor models & EHM of Qi are most natural candidates.
- Looking deeper at more examples including, more general lattice models and models of black holes, shockwaves, and beyond.

Pirsa: 16100037 Page 42/42