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Abstract: <p>| discuss, from a quantum information perspective, recent proposals of Madacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and
Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. | review the idea that the
informational principle of minima complexity determines a dua holographic bulk spacetime from a minimal quantum circuit U preparing a given
boundary state from a trivial reference state. | describe how this idea may be extended to determine the relationship between the <em>fluctuations
</em>of the bulk holographic geometry and the fluctuations of the boundary low-energy subspace. In this way we obtain, for every quantum
system, an Einstein-like equation of motion for what might be interpreted as a bulk gravity theory dual to the boundary system. If time permits | will
comment on the link to Brownian quantum circuits and tensor networks. </p>
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Maximizing the usefulness of the principle of
minimal complexity

The main motivation of this work is to discuss, from a Ql perspective, recent
proposals that spacetime is an emergent property of quantum entanglement.

A proposal has been put forward to determine a dual holographic bulk spacetime
from the informational principle of minimal complexity (PMC).

The main ingredient of this proposal is a minimal quantum circuit U preparing a
given boundary state from a trivial reference state.

The powerfulness of (PMC) allows to determine the relationship between the
fluctuations of the bulk geometry and the fluctuations of the boundary low-energy
subspace.

For every quantum system, one obtains an Einstein-like equation of motion for
what might be interpreted a bulk gravity theory dual to the boundary system.
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Discussed Proposals

m Found in recents works and talks of Raamsdonk, Swingle, Susskind, Brown,
Roberts, Stanford..

m Core idea explored: the pattern of entanglement of a (boundary) state | > of a
collection of d.o.f (qubits) determines the bulk holographic spacetime via (PMC).

m A precise approach to associating a bulk geometry, as a topological space, with a
quantum system comprised of a discrete collection of d.o.f.

m Introducing an action, building on the (PMC), to model fluctuations of the bulk
holographic spacetime.
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Prerequisite Material and Preliminary Machinery
Consider two different systems, namely the bulk M and the boundary OM.

The boundary system (BS) OM is taken to be a quantum system comprised of n
distinguishable subsystems. Ex:

n qubits, H=Q"_,C*, (1)
qudits/H.0,  H=®"_ L*(R) (2)
The bulk system is a “classical system", taken to be a topological space

(X, 7), X=={1,2,n}xRT. (3)

The point set X corresponds to a partially discretized holographic spacetime with
discrete boundary “spatial “ coordinates and holographic direction » € R+,

The (BS) captures all of the relevant low-energy d.o.f of some boundary
Hamiltonian H € B(H).

Example: if /1 = 0 is gapped with unique ground state then there is one relevant
low-energy d.o.f., namely |€2), hence ‘H = C.

I1 are taken to be local w.r.t some finite simple graph ¢ = (V, F) :

V verter set, I edge set (4)

representing respectively the n subsystems and interactions:

H=> hj (5)

jrok
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Prerequisite Material and Preliminary Machinery

States of the boundary ‘H may be specified in terms of a trivial reference basis:
the computational basis.

For our quantum spin system this is just the product basis
|.:‘|.!‘-_3---.1',,>, xr; € {[l,l}, i [,2, , n. (6)

The boundary Hamiltonian determines a second basis via the unitary U
diagonalizing H, i.e.,

UTHU = D, D diagonal, U e SU(H) = SU((2™). (7)
Even if I is rather simple, e.g., (¢ is a line graph, that U can be extremely difficult

to determine in general (Osborne, 2012, Aharonov et al., 2013).

The unitary U diagonalizing H is central: Its entangling structure determines an
associated dual holographic bulk spacetime AA.

This is done by by studying the quantum information complexity of UU counting the
number of nontrivial quantum gates required to synthesis U.

A powerful method to precisely capture the complexity of unitary U € SU(H) was
introduced by Nielsen and coauthors.
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Geometric Complexity a la Nielsen
Fo certain specific metrics on the tangent space at U
(St TuSUH) x Ty SU(H) — R,

the geodesic length C'(U) = d(1,U) as an appropriate measure, where

d(l,U) = ilj_l' / \/(I\'(-,-% K (r))dr,

Via integration of Schrédinger eq. one has

Opy(r) = —iK(r)y(r), that ~(0) =1, ~(R)=U, ReRT".

All the metrics are taken to be right-invariant: 7y SU(H) ~ Ty SU(H), I.e.,

ik — —iKU where —iK € su(H).

One particular family of metrics plays a key role, namely

[ - N -
) ) — .2 on | @n .
(A, B), = Gim@n (l @Aty DEn (1 ))
where |
Dp(X) = (1 = p)tr(X) 5 + pX, with p € RT.
For p = 1 this reduces to (A, B) = gty tr(A1B).
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Euler-Arnol'd Equation

As p — o0, d(I,U) admits the pleasing operational interpretation as the minimal
number of quantum gates required to (approximately) implement U as a QC.

The vector field —i K (r) associated with the geodesic flow ~(r) satisfies the
Eruler-Arnol’d equation

LK (r
_4K(r) By (—K (r), —iK (1)), (13)
dr
where By (-, ) determined by ((X,Y ], Z), == (B(Z,Y), X)p,VX,Y, Z € su(H).
Special case: p = 1 and when U is sufficiently close to 7, i.e., I and U are not
conjugate points of SU(H), then
~y(r)=e iRr (14)

where I = ilog(U) = const..
Nielsen's complexity measure: a central tool to determine holographic space M
from a state |) of OM.
The idea/recipe:
() Take as input |¢) € H.

(i) Find the unitary / of minimal compexity '({J) which prepares |+) from the trivial initial
state |00 --.0), i.e.,
U000 --0) = |4). (15)

(i) Now, assuming that the infimum may be achieved by the geodesic ~(r) with —i K (r):

[ Te .‘]'(:’. J\(r}n"ﬁ'. (16)
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Quantum Circuit V

This may be approximated by discretization: find a quantum circuit

V=VpVp_y-- Vi, Vi, j=1,2...T,

are 1 or 2-qubit quantum gates such that V' ~ U':

-

’ L J ]

—_
—
-
—
.
-
=
=

U

(17)

Page 13/42



Bulk Topology and Geometry from Geodesics in
SU(H)

m Let~ be a path connecting / to U in SU(H)

. , , ;
,)__ — 'Tl” f.,ll J’\{f)fh‘ ,\(i) E [‘}(H) (19)
m How can one interpret the matrix K (r)?
The matrix K (r) may be regarded as a time-dependent Hamiltonian acting on oM :
K (r) X kr(r), (20)
rc{1,2,...,n}

kr(r)is an operator acting nontrivially only on subsystems in the subset /.

For the considered metrics, all possible subsets / can appear, and there are
exponentially many interaction terms.

K (r) 1s generically a strongly interacting quantum spin system.

m Goal: associate a topological space to K (r) for each instantaneous holographic
time slice r € |0, R).

m How to do this?
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Many Operationally Meaningful Ways

AW

m [t depends on the physical questions one asks!

m Approach |
m Tointerpret KK (r) as a free-particle Hamiltonian for some possibly very complicated
configuration space X',
m Building A’ by matching the dispersion relation of the localized excitations of /' () to
that of free-particle Hamiltonian on X'.

m Approach Il

m To study the response of high temperature states ps (), with 5 small to localized
perturbations A and B at different sites:

m At zero inverse temperature 5 = 0 all perturbations on different sites will be completely
uncorrelated.

m However, when /3 is small there are residual correlations between nearby sites allowing
us to say when two sites are close.

m While somewhat indirect, this approach has the considerable upside that it immediately
leads to a positive-definite metric.
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Many Operationally Meaningful Ways

o m Approach lll

m Studying the propagation of a localized perturbation A at some site j according to the
Schrédinger time evolution determined by /K ().

m And assuming a Lieb-Robinson type bound on the dynamics of K ()

|A(T), B|| < ce”ITI=HER A1 B]). (21)

m Such a bound can be used to infer a pseudo-Hiemannian type structure via a causality
relationon the set {1,2,..+ ,n} x RT.

m Such a relation can, in turn, be quantified in terms of a causal set leading to an
embedding in a Lorentz manifold.

m Another approach...

m Approaches Il and Il maybe regarded as a Wick-rotated “Euclidean approach”
and “Lorentzian approach", respectively to the problem of building bulk
holographic spacetimes.
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Bulk Holographic Geometry from Thermal
Correlations

A quantum system of n quantum spins {1, 2, ... ,n} with Hamiltonian K (r) is
brought into thermal equilibrium at 3.

The state of the system is described by the Gibbs ensemble

e B (1)

tr(e [ (r) ) (22)

Pp

Consider the effect of a small perturbation A € su(H) localized at site j and I3 at
site k.

The resulting system state is

BK(r)+icA BK(r)+iel3

e _ e
pp(r) +eY ~

lII-(f- g"'ff\(i'}) ] 1rl'((‘ Il"'”\.(l')) ' (23)

pa(r) + eX ~

How distinguishable is the perturbed state ps(r) + ¢X from the state pgz(r) + ¢Y'?

A at site j is close, or adjacent, to B local to site k if the states pz(r) + ¢X and
pa(r) + €Y are not completely distinguishable.
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Bulk Holographic Geometry from Thermal
Correlations

m Does this notion correspond to a topological/geometrical conception of closeness?

m Near the infinite-temperature fixed point p o I, all the correlations are disordered

by thermal fluctuations.

The effects of a local perturbation are delocalized only in a small surrounding
region determined by the high-temperature correlation length depending on /3.

If pg(r) +eX and pg(r) + €Y are independent fluctuations (uncorrelated), A is far
from B.

This region, in turn, determines the desired adjacency for the site ; and k&, which

supplies us with a metric quantity.

Distinguishability, as measured by the relative entropy S(:[|-), of ps(r) 4+ ¢X and

pp(r) + €Y is quantified to O(¢) by

A By = = Flay) 24)
a0 pPa(r) — f).f‘f)_.’; T, Yy) | y=0,

| p N ;
f"(..". ',f/) - . |Uf_',' (“, ((. BK (r)+ieA a,u”)) (25)

is the free energy ( Bény & Osborne, 2015).

This idea has also been exploited in various incarnations (Ryu & Takayanagi
2012; Qi 2013).
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Bulk Holographic Geometry from Thermal
Correlations

m Thus, if (A, B), () Is nonzero for 3 infinitesimal when j # k this means that
d(j, k) must be arbitrarily small, i.e., j and k are adjacent.
m Our task is thus to extract a distance measure or metric, d(j, k) from (A, B) , (..

m How to do this?

m One direct way is simply to take a log

10 k) 2 - (A, B)p s (m)] oy (29)
aly, k SUp 4 p D log '. ) Ni vy
A B]]
being similar to (Qi 2013).
m ltis notclear if d(y, k) so defined satisfies the triangle inequality
d(j, 1) < d(j, k) + d(k,1). (30)

m A way around this is use d(j, k) only to define an adjacency relation between pair of
spins (7, k).

Then use the adjacency relation to build a metric. What does this mean?

First set up the adjacency matrix

‘ : (A, B) (] oy 1)
Ay sup , 2 10g y V.
T ERAE I s
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Bulk Holographic Geometry from Thermal
Correlations

m A; defines a weighted graph structure GG(V, /) on the vertex set

V={1,2,.-- ,n}. (32)

m For any pair of points 5 and k& in (¢, the distance between j and & is defined as the
length of the shortest path
P (e1,e0,  ,em), and ¢ (z, ) (33)
are edges, between 5 and k.

m This is guaranteed to obey the triangle inequality. Thus the metric is defined as

d(g, k) inl'{ X Ace,yy| P is a path fromj 1(){.‘} (34)
r,yep
m This is difficult to compute in general.
m Computable approximation
m [f the term 1
tr(A{K(r),B}) < e P, (35)

forall A and B in (A, B), ., expanded to first order, then j and & are not adjacent.
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Bulk Holographic Geometry from Thermal
Correlations

Computable approximation

m if, however, there are local operators A at j and I3 at k such that for /3 infinitesimal
|
<1l ff) e B (36)

Prr)
then 5 and & are adjacent.

Restriction to hamiltonians K (r) comprised of only one- and two-particle
interaction terms k; . (r) (case when p — o0).

Then to the first order in /3 this is equivalent to asking if there are traceless A at j
and B at k such that

tr(A{K (r), B}) # 0, (37)
namely, j is adjacent to £ if the two-particle interaction term k; j, () in K (r) Is
nonzero.

Physically this is equivalent to: ;7 and k are adjacent if at time » an (infinitesimal)
quantum gate was applied coupling 7 and k.

When K is comprised of three-particle or higher interactions, one needs to go to
higher orders in /3 to determine the adjacency.

Taking the product of the metric topology determined by d(-, -) for each r provides
the desired bulk topological space M.
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Bulk Holographic Geometry from Causal Sets

m The metric topology space does not capture an important aspect of quantum
circuits comprised of local gates, namely, their causal structure.

m In every quantum circuit there is a kind of “light cone" of information propagation.

m A qubit ; is said to be in the past of qubit & if there Is a sequence of quantum
gates in the circuit connecting j to k.

m Because the geodesics « in SU(H) obtained via (PMC) are generated by
essentially local gates we should actually rather associate some kind of
discretized pseudo-Riemannian manidold to the bulk holographic spacetime.

m |n other words, it is rather more natural to think of M as a de Sitter-type (Bény
2013, Czech et al. 2015).

m One should regard the previous approach as the Wick-rotated Euclidean version
of this approach.
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Bulk Fluctuations from (PMC) and Action

The energy functional determining the geodesic ~ is

. | 7 o
Flv) = - / (j-.j-)w.rfl (46)
< 00

m This quantity is minimised precisely on geodesic ~ achieving d(I, U).

m A fluctuation

v = +dy (47)

should therefore be a path in SU(H) having a near-minimal energy.

m Perturbation ~ of o/ can also be interpreted as fluctuations in the bulk geometry.

m Imagine the paths ~ arise from a quantum system, It is natural to introduce

Zp = / D~e BL(y) (48)

to model the fluctuations.

m Fluctuations ~ are determined by the Gibbs distribution.
m Zp can be understood as that for a string with target space SU (H) with fixed

endpoints at / and U.
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What is the structure of a fluctuation?

The energy IZ() is only sensitive to the presence of quantum gates between
pairs of spins.

m [tis not sensitive to which spins j and k the gate is applied to.

m The structure of near-minimal fluctuations of a geodesic are equal to ~(t) Vt

except at one instant ¢ = ¢

At t,, a unitary gate V; ;, is applied to an arbitrary pair (j, k) followed immediately
.

by \M_.

Such a geodesic corresponds to

; - . - " 7
Bulk holographic spacetime = mainimal one except with a " wormhole™ att,,

m Such a wormhole immediately evaporates.

m The fluctuating bulk geometry determined by Z; is comprised of spacetimes

where wormholes are fluctuating in and out of existence between all pairs (4, k) of
points.
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Brownian Motions on SU(H)

m The path integral Zp is remarkably simple; it is quadratic in —i K (r).

m D~ye PE() may hence be understood as a Brownian measure on paths in

SU(H) generated by 2-local tangent vectors (Lashkari et al. 2011).
In the p — oo limit each path ~(t¢) solves (SDE)

n 3
.~ ' o |
Hrﬂ}(f) o 1 z E (}'if.” ) (T‘r.. If“ﬂf'(")”r-Igul‘,rr,r..(l’) o ‘)P:'U)f” (49)

j#k =0 :

What makes Zp nontrivial is the constraint that the endpoints of the path are
exactly I and U, turning Zp into integral over Brownian Bridges (Lévy et al. 2015).

Bulk fluctuations are interpreted as a very complicated random variable g = ¢(U)
which depends in a rather nonlinear way on the realization U of the Brownian
bridge.

Comment: The proposal of Z5; essentially promotes the CA argument to a
definition:
The action F(~) is directly related to the complexity (1, V) in exactly the same way the energy of a

geodesic is related to the geodesic length in Riemannian geometry, i.e., the minima of both quantities
coincide.
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Bounadary Perturbations and Jacobi Fielas

m The (PMC) already determines an EOM constraining the structure of the induced
bulk fluctuations.

m This equation could be understood as a kind of generalized Einstein equation.

suE")

m Model the perturbation of the unitary U, i.e., study perturbed unitaries:
U =U +dU (50)

m Two natural sources:
(1) Arising from the presence of local external fields, .J

X

H(s, J) = H 4 Z X Jhod, (51)
I ev=1

J
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Jacobi Equation

A shift in v () corresponds to a shift
M= M+ dM, (57)

in the holographic space.

Capturing the structure of the bulk holographic spacetime with a (metric) topology,
we observe a shift in the topology 7 on the point set X.

The first order shift Os~(r, s) in v(r) satisfies the Jacobi equation

O7Y = Bp(0rY + [X,Y], X) 4+ Bp(X,0:Y + [X,Y]) — [Bp(X, X), Y] 4

T

FX,00Y], (58)

X = (0py)y " tand Y = (0sv)y L.
The Jacobi equation may be naturally regarded as a kind of “Einstein equation”
constraining the dynamics of the bulk geometrical fluctuations.

The vector field Y capturing the bulk geometrical fluctuation dAM is directly a
function of the external boundary field .J},.

This allows us to deduce a precise bulk/boundary correspondence. This
observation is the main contribution of this part.
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Solvable Examples

m For arbitrary local /1, It is very hard to say anything nontrivial about the structure
of U(.J), and hence Y.

m Our general conclusions concerning the properties of the fluctuation field Y are
consequently limited.

m Example I: The boundary system is trivial (noninteracting), i.e.,
TL
H=Y) o (59)
Jj=1

In this case ’,,(UV) = 0 for all p.
The holographic time direction collapses to a point set.

The associated holographic geometry is also trivial, corresponding to a set of n
completely disconnected bulk universes.

The fluctuations are also structureless as all different pairs of sites j # k fluctuate
independently.

This corresponds to spontaneous creation and annihilation of wormholes between all
pairs of sites.
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Example

m Trvial example | and Boundary Fluctuation : a pair (4, k) of boundary spins is
spontaneously entangled

H— VI HVj, (60)

1
J

m V. Is a near-identity operation entangling spins j and k. For example, take

\ ;}. X ”.I:. rr;.:,' (61 )
Thus H fluctuates to
H' = H +ic (oo} + o5 o} ) (62)
By construction the unitary {7/ diagonalising I’ is simply
U=V, =1—icojoy. (63)
The new geodesic ' connecting / to U/’
v (r) = eIk, (64)

Causal structure of bulk fluctuations: sites j and & become causally connected while the
remaining sites remain causally disconnected.
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AW

Example |l

Consider unitaries of the form: U/ = ¢'71 with L. € B(H) a local generator.
Dynamics of quenched systems:

m The hamiltonian of the boundary quantum system is suddenly changed from some initial
I to a new hamiltonian L.

m It has been argued that such dynamics are dual to Einstein-Rosen bridges supported by
localised shock waves (Roberts, Stanford & Susskind 2015).

m Solving the Euler-Arnol'd equation, as long as / and (/ are not conjugate points, one

finds
~v(r) etk r € (0,7], and IS () L Const. (65)

Consider now a fluctuation of the form U’ = ¢*M {J with M local to a pair (j, k) of
sites.

This represents a nonlocal entangled pair of particles fluctuating into existence at
sites j and & just after the quench.

One can completely solve the Jacobi equation to yield the (constant) vector field
Y

"0 J [
—1Y (1) / M — du (66)
Jo U++ul U+ ul
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Conclusion and Outlook

Outlook:

The (PMC) is strongly reminiscent of the principle of least action (PLA): indeed,
we promoted it per definition to a (PLA) to obtain a model for the bulk holographic
spacetime fluctuations.

It is an intriguing question whether there is a deeper connection between the
(PMC) and Kolmogorov complexity (Soklakov, 2002), and similarly, between
fluctuations and Solomonoff induction.

Questions

m Should we give in to temptation and interpret the partition function as a quantum gravity
theory?

m Does this theory enjoy any kind of diffeomorphism invariance?

m As itis a theory of strings in ridiculously high-dimensional space (S (H)), can it be
related to string theory proper, or is this a mirage?

It is vitally important to study the continuum limit following (Osborne & Milsted,
2016). The resulting bulk spacetime for CFTs should converge to AdS.

Tensor networks should emerge as (alomost) geodesics. Perfect tensor and
random tensor models & EHM of Qi are most natural candidates.

Looking deeper at more examples including, more general lattice models and
models of black holes, shockwaves, and beyond.
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