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Abstract: <p>I will explain and prove the statement of the title. The proof relies on arecent result of Slofstrain combinatorial group theory and the
hypergraph approach to contextuality.</p>

<p>Based on<a href="http://arxiv.org/abs/1607.05870"> http://arxiv.org/abs/1607.05870</a>.</p>
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What is quantum logic?

» |ldea: Quantum weirdness is an illusion due to reasoning in Boolean

logic, which is inadequate at the quantum level.

» Example: in Boolean logic, A distributes over
FALQ VR —={F NGV IFE N K],

where P, (@ and R propositions. Not so in quantum logic!
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What is quantum logic?

» ldea: Quantum weirdness is an illusion due to reasoning in Boolean
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logic, which is inadequate at the quantum level.
» Example: in Boolean logic, A distributes over
FALGVRE—(ENEVIF K]
where P, (@ and R propositions. Not so in quantum logic!

» Quantum propositions are projection operators on Hilbert space, ot

equivalently closed subspaces.

» Connectives of quantum logic:

» IS Intersection of subspaces,
> Is the closed linear span,

» Negation is the orthogonal complement

» Example where the above distributivity fails?
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The laws of quantum logic

So which laws of logic are valid quantumly?

» Some rules of Boolean logic still apply, e.g.
PV P L. PAP 0.

» Orthomodularity: if P Q. then

PV (P-AQ)=Q.
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The laws of quantum logic

So which laws of logic are valid quantumly?

» Some rules of Boolean logic still apply, e.g.

PV , FAF 0.
» Orthomodularity: if P @, then
el o &) — 6
» [hese are some particular laws. |s it possible to classify all of them?
» More precise question: what is the complexity of telling whether a

given candidate law is valid or not?
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Complexity of quantum logic

{ 1 and & nd nd £,) implies £
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Our proot shows undecidability for an even more specitic class of

| i il
Implications, as rollows

For projections Fi, ..., P,, the following are equivalent

O
-

P E,

4 |

i N, l and FP; Frfor alt b, ).
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Complexity of quantum logic

1 o 1 | 1 [
[ here is no algorithm to decide whether an implication of the form
(E1 and E> and and [ implies f
. | { | | |
holds for all Hilbert aces ner ach | S ell F has one o ¢
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Complexity of quantum logic

I here is no algorithm to decide whether an implication of the form

holds tor all Hil

yert spaces, where each E; as well as F has one of the

following two forms

1al

L | | | | L { ( | | L1
> an equation pnrased solely In terms Ofr 1ree variapies, [attice joIin
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[\}‘ir roo N( [ ! el 1 / e (
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) ) "\ l : \ Il ala \ V' 7 1 | -+ 4
For projections i P F,. the tollowing are quivalent
b, T, )
e N |

J;Ef'( tion Of

A hypergraph (V. E) is a finite set V together with a

subsets |/ 2V called hyperedges.
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Given a hypergraph (V. E), is there a quantum representation

consisting of projections (P, ),cyv such that OC(P,) for all e?

Antonio Acin, lobias Fritz, Anthony Leverrier and Ana Belén Sainz, A

Combinatorial Approach to Nonlocality and Contextuality
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Given a hypergraph (V. E), is there a quantum representation

consisting of projections (P, ),cyv such that OC(P,) for all e?

For example:

r(0 | ® ® oj\
Io ? » ol

Next example: same, but with some nodes removed!

No algorithm is known, but proving undecidability seems hard.

Antonio Acin, lobias Fritz, Anthony Leverrier and Ana Belén Sainz, A

Combinatorial Approach to Nonlocality and Contextuality,
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Given a hypergraph (V,E) and w € V, is P, 0 in every quantum

representation of (V. E)?

Example:

(7 AT | )
- . . o
' '
(lelloefle||e)
- v ~ )
v

(e[| o] ® i

~
( | ] @ ® )
S 7,

[obias Fritz, Quantum analogues of Hardy's nonlocality parado
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Given a hypergraph (V,E) and w € V, is P, 0 in every quantum

representation of (V, E)?

)

Example:
(7 Y1 )
. . . »
' ™
e ||lofle]||e
- 'L ~ )
(o || @ |l ® )
( )
L_J(e]jle](e]

QOur verdict is:

This problem is undecidable.

[obias Fritz, Quantum analogues of Hardy's nonlocality parado
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Hypergraph C*-algebras

For the proof, we will use that quantum representations of (V/, E) are the

same thing as representations of the hypergraph C*-algebra C*(V, E),
C*(V,E)=(P,,veV | Po=P, =P S P

I he decision problem then asks whether P, =0 in C*(V, E).

lobias Fritz, Tim Netzer, Andreas Thom, Can you compute the operator norm?,
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Another kind of algebraic

Richard Cleve, Li Liu,
r Linear System Gam

William Slofstra, Isirelson
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I 'he solution group associated to a

vipartite graph G = [ U T is the
group with generators (x;);c; and relati

)
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he solution group asso
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SOIutIon group 4 clated ) DIpartit rap
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. I e o 4 ~ " }
solution group associated to a biparti ‘raph
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We now leverage Slofstra's result to prove our main theorem.

A solution group C*-alge

ra C*(G) is computably isomorphic to a

hypergraph C*-algebra C*(V/, E) for a suitable (V, E)

ldea of proof

» [he x; are £1-valued projective measurements.

» For every 1 [ there is a measurement corresponding to joint

» [ he outcomes for which the parity of such a measurement is —1 are

removed.

l | l l 1 1| | l
» This results in a contextuality scenario described by a hypergraph

I he isomorphism is such that x l if and only if P
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A/ | | Afed ' 14 . / s A,
We now leverage Slofstra's result to prove our main theorem

A solution group C*-algebra C*(G) is computably isomorphic to a

hypergraph C*-algebra C*(V/, E) for a suitable (V, E)

» [he x; are £1-valued projective measurements.

» For every t [ there is a measurement corresponding to joint

measurement of the { x;

4

[ 'he outcomes for which the parity of such a measurement is —1 are

removed.

| |4 . ay . ~ 17 . | / - , -
» This results in a contextuality scenario described by a hypergraph

[ he isomorphism is such that x, it and only if P ‘l
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[ he solution group associated to a bipartite graph G = /U T is th
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The role of Hilbert space dimension

itv relies crucially on the infinite-dimensionality on

» [ he undecida

b1 |
s 1

Hilbert space!

» [he analogous decision problem in a fixed range of dimensions is

decidable thanks to real quantifier elimination

onard Lipshitz, The Undecidability of the Word Problems for Pro

Geometries and Modular Latti
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The role of Hilbert space dimension

b g | p p .« +h. A p . \ v
ity relies crucially on the infinite-dimensionality on

» [he undecidabi
Hilbert space!

» [he analogous decision problem in a fixed range of dimensions is

decidable thanks to real quantifier elimination

» For arbitrary finite Hilbert space dimension, undecidability of

quantum logic was already known®
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