Title: Quantum logic is undecidable

Date: Oct 25, 2016 03:30 PM

URL: http://pirsa.org/16100035

Abstract: I will explain and prove the statement of the title. The proof relies on a recent result of Slofstra in combinatorial group theory and the hypergraph approach to contextuality.

Based on http://arxiv.org/abs/1607.05870.

Quantum logic is undecidable

arXiv:1607.05870

October 2016

What is quantum logic?

- ▶ Idea: Quantum weirdness is an illusion due to reasoning in Boolean logic, which is inadequate at the quantum level.
- ► Example: in Boolean logic, ∧ distributes over ∨,

$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R),$$

where P, Q and R propositions. Not so in quantum logic!

What is quantum logic?

- ▶ Idea: Quantum weirdness is an illusion due to reasoning in Boolean logic, which is inadequate at the quantum level.
- ► Example: in Boolean logic, ∧ distributes over ∨,

$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R),$$

where P, Q and R propositions. Not so in quantum logic!

- Quantum propositions are projection operators on Hilbert space, or equivalently closed subspaces.
- ► Connectives of quantum logic:

Pirsa: 16100035 Page 5/29

What is quantum logic?

- ▶ Idea: Quantum weirdness is an illusion due to reasoning in Boolean logic, which is inadequate at the quantum level.
- ► Example: in Boolean logic, ∧ distributes over ∨,

$$P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R),$$

where P, Q and R propositions. Not so in quantum logic!

- Quantum propositions are projection operators on Hilbert space, or equivalently closed subspaces.
- ► Connectives of quantum logic:
 - ► ∧ is intersection of subspaces,
 - ▶ ∨ is the closed linear span,
 - Negation is the orthogonal complement.
- Example where the above distributivity fails?

Pirsa: 16100035 Page 6/29

The laws of quantum logic

So which laws of logic are valid quantumly?

► Some rules of Boolean logic still apply, e.g.

$$P \vee P^{\perp} = 1$$
, $P \wedge P^{\perp} = 0$.

▶ Orthomodularity: if $P \leq Q$, then

$$P \vee (P^{\perp} \wedge Q) = Q.$$

The laws of quantum logic

So which laws of logic are valid quantumly?

► Some rules of Boolean logic still apply, e.g.

$$P \vee P^{\perp} = 1$$
, $P \wedge P^{\perp} = 0$.

▶ Orthomodularity: if $P \leq Q$, then

$$P \vee (P^{\perp} \wedge Q) = Q.$$

- ► These are some particular laws. Is it possible to classify all of them?
- ► More precise question: what is the **complexity** of telling whether a given candidate law is valid or not?

Complexity of quantum logic

Theorem

There is no algorithm to decide whether an implication of the form

$$(E_1 \text{ and } E_2 \text{ and } \dots \text{ and } E_k) \text{ implies } F$$

holds for all Hilbert spaces, where each E_i as well as F has one of the following two forms:

- ▶ an equation phrased solely in terms of free variables, lattice join ∨, and 0;
- ightharpoonup an orthogonality relation \bot between two free variables.

Example:

▶ $P \lor Q = 1$ and $Q \lor R = 1$ and $R \lor P = 1$ and all pairwise orthogonalities implies P = 0.

Our proof shows undecidability for an even more specific class of implications, as follows.

Lemma

For projections P_1, \ldots, P_n , the following are equivalent:

$$ightharpoonup \sum_i P_i = 1$$
,

▶ $P_1 \lor ... \lor P_n = 1$ and $P_i \perp P_j$ for all i, j.

Pirsa: 16100035 Page 11/29

Complexity of quantum logic

Theorem

There is no algorithm to decide whether an implication of the form

$$(E_1 \text{ and } E_2 \text{ and } \dots \text{ and } E_k) \text{ implies } F$$

holds for all Hilbert spaces, where each E_i as well as F has one of the following two forms:

- ▶ an equation phrased solely in terms of free variables, lattice join ∨, and 0;
- ightharpoonup an orthogonality relation \bot between two free variables.

Example:

▶ $P \lor Q = 1$ and $Q \lor R = 1$ and $R \lor P = 1$ and all pairwise orthogonalities implies P = 0.

Pirsa: 16100035 Page 12/29

Complexity of quantum logic

Theorem

There is no algorithm to decide whether an implication of the form

$$(E_1 \text{ and } E_2 \text{ and } \dots \text{ and } E_k) \text{ implies } F$$

holds for all Hilbert spaces, where each E_i as well as F has one of the following two forms:

- ▶ an equation phrased solely in terms of free variables, lattice join ∨, and 0;
- ightharpoonup an orthogonality relation \bot between two free variables.

Example:

▶ $P \lor Q = 1$ and $Q \lor R = 1$ and $R \lor P = 1$ and all pairwise orthogonalities implies P = 0.

Pirsa: 16100035 Page 13/29

Our proof shows undecidability for an even more specific class of implications, as follows.

Lemma

For projections P_1, \ldots, P_n , the following are equivalent:

- $ightharpoonup \sum_i P_i = 1$,
- ▶ $P_1 \lor ... \lor P_n = 1$ and $P_i \perp P_j$ for all i, j.

We denote this by $OC(P_1, ..., P_n)$. It is a conjunction of premises of the above form.

Definition

A **hypergraph** (V, E) is a finite set V together with a collection of subsets $E \subseteq 2^V$ called **hyperedges**.

Pirsa: 16100035 Page 14/29

Decision Problem¹

Given a hypergraph (V, E), is there a **quantum representation** consisting of projections $(P_v)_{v \in V}$ such that $OC(\bar{P}_e)$ for all e?

Pirsa: 16100035 Page 15/29

¹Antonio Acín, Tobias Fritz, Anthony Leverrier and Ana Belén Sainz, A Combinatorial Approach to Nonlocality and Contextuality, arXiv:1212.4084.

Decision Problem¹

Given a hypergraph (V, E), is there a **quantum representation** consisting of projections $(P_v)_{v \in V}$ such that $OC(\bar{P}_e)$ for all e?

For example:

Next example: same, but with some nodes removed!

No algorithm is known, but proving undecidability seems hard.

¹Antonio Acín, Tobias Fritz, Anthony Leverrier and Ana Belén Sainz, A Combinatorial Approach to Nonlocality and Contextuality, arXiv:1212.4084.

Decision Problem

Given a hypergraph (V, E) and $w \in V$, is $P_w = 0$ in every quantum representation of (V, E)?

Example:²

²Tobias Fritz, Quantum analogues of Hardy's nonlocality paradox, arXiv:1006.2497.

Decision Problem

Given a hypergraph (V, E) and $w \in V$, is $P_w = 0$ in every quantum representation of (V, E)?

Example:²

Our verdict is:

Main Theorem

This problem is undecidable.

Pirsa: 16100035 Page 18/29

²Tobias Fritz, Quantum analogues of Hardy's nonlocality paradox, arXiv:1006.2497.

Hypergraph C*-algebras

For the proof, we will use that quantum representations of (V, E) are the same thing as representations of the **hypergraph C*-algebra** $C^*(V, E)$,

$$C^*(V,E) = \left\langle P_v, \ v \in V \ \middle| \ P_v^2 = P_v = P_v^*, \quad \sum_{v \in e} P_v = 1 \right\rangle$$

The decision problem then asks whether $P_w = 0$ in $C^*(V, E)$.

Pirsa: 16100035 Page 19/29

³Tobias Fritz, Tim Netzer, Andreas Thom, Can you compute the operator norm?, arXiv:1207.0975.

Definition (Cleve, Liu, Slofstra⁴ with minor modification)

Pirsa: 16100035 Page 20/29

⁴Richard Cleve, Li Liu, William Slofstra, Perfect Commuting-Operator Strategies for Linear System Games, arXiv:1606.02278.

⁵William Slofstra, Tsirelson's problem and an embedding theorem for groups arising from non-local games, arXiv:1606.03140.

Definition (Cleve, Liu, Slofstra⁴ with minor modification)

The **solution group** associated to a bipartite graph $G = I \cup T$ is the group with generators $(x_i)_{i \in I}$ and relations

⁴Richard Cleve, Li Liu, William Slofstra, Perfect Commuting-Operator Strategies for Linear System Games, arXiv:1606.02278.

⁵William Slofstra, Tsirelson's problem and an embedding theorem for groups arising from non-local games, arXiv:1606.03140.

Definition (Cleve, Liu, Slofstra⁴ with minor modification)

The **solution group** associated to a bipartite graph $G = I \cup T$ is the group with generators $(x_i)_{i \in I}$ and relations

- $x_i^2 = 1$ for all $i \in I$,
- $ightharpoonup x_i x_j = x_i x_j$ for all i, j with $i, j \sim t$ for some $t \in T$,
- ▶ $\prod_{i \in t} x_i = 1$ for all $t \in T$.

Decision Problem

Given (V, E) and $w \in V$, is $x_w = 1$ in the solution group $\Gamma(V, E)$?

Pirsa: 16100035 Page 22/29

⁴Richard Cleve, Li Liu, William Slofstra, Perfect Commuting-Operator Strategies for Linear System Games, arXiv:1606.02278.

⁵William Slofstra, Tsirelson's problem and an embedding theorem for groups arising from non-local games, arXiv:1606.03140.

Definition (Cleve, Liu, Slofstra⁴ with minor modification)

The **solution group** associated to a bipartite graph $G = I \cup T$ is the group with generators $(x_i)_{i \in I}$ and relations

- $\rightarrow x_i^2 = 1$ for all $i \in I$,
- $ightharpoonup x_i x_j = x_i x_j$ for all i, j with $i, j \sim t$ for some $t \in T$,
- ▶ $\prod_{i \in t} x_i = 1$ for all $t \in T$.

Decision Problem

Given (V, E) and $w \in V$, is $x_w = 1$ in the solution group $\Gamma(V, E)$?

Theorem (Slofstra⁵)

This problem is undecidable.

⁴Richard Cleve, Li Liu, William Slofstra, Perfect Commuting-Operator Strategies for Linear System Games, arXiv:1606.02278.

⁵William Slofstra, Tsirelson's problem and an embedding theorem for groups arising from non-local games, arXiv:1606.03140.

Definition (Cleve, Liu, Slofstra⁴ with minor modification)

The **solution group** associated to a bipartite graph $G = I \cup T$ is the group with generators $(x_i)_{i \in I}$ and relations

- $x_i^2 = 1$ for all $i \in I$,
- $\blacktriangleright x_i x_j = x_i x_j$ for all i, j with $i, j \sim t$ for some $t \in T$,
- ▶ $\prod_{i \in t} x_i = 1$ for all $t \in T$.

Decision Problem

Given (V, E) and $w \in V$, is $x_w = 1$ in the solution group $\Gamma(V, E)$?

Theorem (Slofstra⁵)

This problem is undecidable.

⁴Richard Cleve, Li Liu, William Slofstra, Perfect Commuting-Operator Strategies for Linear System Games, arXiv:1606.02278.

⁵William Slofstra, Tsirelson's problem and an embedding theorem for groups arising from non-local games, arXiv:1606.03140.

We now leverage Slofstra's result to prove our main theorem.

Lemma

A solution group C*-algebra $C^*(G)$ is computably isomorphic to a hypergraph C*-algebra $C^*(V, E)$ for a suitable (V, E).

Idea of proof:

- ▶ The x_i are ± 1 -valued projective measurements.
- ▶ For every $t \in T$ there is a measurement corresponding to joint measurement of the $\{x_i : i \sim t\}$;
- ▶ The outcomes for which the parity of such a measurement is -1 are removed.
- ► This results in a contextuality scenario described by a hypergraph.

The isomorphism is such that $x_w = 1$ if and only if $P_w = 0$.

Pirsa: 16100035 Page 25/29

We now leverage Slofstra's result to prove our main theorem.

Lemma

A solution group C*-algebra $C^*(G)$ is computably isomorphic to a hypergraph C*-algebra $C^*(V, E)$ for a suitable (V, E).

Idea of proof:

- ▶ The x_i are ± 1 -valued projective measurements.
- ▶ For every $t \in T$ there is a measurement corresponding to joint measurement of the $\{x_i : i \sim t\}$;
- ► The outcomes for which the parity of such a measurement is −1 are removed.
- ▶ This results in a contextuality scenario described by a hypergraph.

The isomorphism is such that $x_w = 1$ if and only if $P_w = 0$.

Pirsa: 16100035 Page 26/29

Definition (Cleve, Liu, Slofstra⁴ with minor modification)

The **solution group** associated to a bipartite graph $G = I \cup T$ is the group with generators $(x_i)_{i \in I}$ and relations

- $x_i^2 = 1$ for all $i \in I$,
- $ightharpoonup x_i x_j = x_i x_j$ for all i, j with $i, j \sim t$ for some $t \in T$,
- ▶ $\prod_{i \in t} x_i = 1$ for all $t \in T$.

Decision Problem

Given (V, E) and $w \in V$, is $x_w = 1$ in the solution group $\Gamma(V, E)$?

Pirsa: 16100035 Page 27/29

⁴Richard Cleve, Li Liu, William Slofstra, Perfect Commuting-Operator Strategies for Linear System Games, arXiv:1606.02278.

⁵William Slofstra, Tsirelson's problem and an embedding theorem for groups arising from non-local games, arXiv:1606.03140.

The role of Hilbert space dimension

Final Remarks

- ► The undecidability relies crucially on the infinite-dimensionality on Hilbert space!
- ► The analogous decision problem in a fixed range of dimensions is decidable thanks to real quantifier elimination.

⁶Leonard Lipshitz, The Undecidability of the Word Problems for Projective Geometries and Modular Lattices, jstor.org/stable/1996907.

The role of Hilbert space dimension

Final Remarks

- ► The undecidability relies crucially on the infinite-dimensionality on Hilbert space!
- ► The analogous decision problem in a fixed range of dimensions is decidable thanks to real quantifier elimination.
- ► For arbitrary finite Hilbert space dimension, undecidability of quantum logic was already known⁶.

Pirsa: 16100035 Page 29/29

⁶Leonard Lipshitz, The Undecidability of the Word Problems for Projective Geometries and Modular Lattices, jstor.org/stable/1996907.