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Abstract: <p>Béell's theorem shows that our intuitive understanding of causation must be overturned in light of quantum correlations. Nevertheless,
guantum mechanics does not permit signalling and hence a notion of cause remains. Understanding this notion is not only important at a
fundamental level, but aso for technological applications such as key distribution and randomness expansion. It has recently been shown that a
useful way to determine which classical causal structures give rise to a given set of correlations is to use entropy vectors. We consider the question
of whether such vectors can lead to useful certificates of non-classicality. We find that for a family of causal structures that include the usual
bipartite Bell structure they do not, in spite of the existence of non-classical correlations. Furthermore, we find that for many causal structures
non-Shannon entropic inequalities give additional constraints on the sets of possible entropy vectors in the classical case. They hence lead to tighter
approximations of the set of realisable entropy vectors, which enables a sharper distinction of different causal structures. Whether these improved
characterisations are also valid for the quantum case remains an open problem whose resolution would have implications for the discrimination of

classical and quantum causes.</p>
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Causal Structures - Classical and Quantum Cause

» Correlations between two space-like separated parties.
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Causal Structures - Classical and Quantum Cause

» Correlations between two space-like separated parties.
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» Reconsider in light of Bell's theorem

» free choice of settings
» locality
» “classical” notion of cause

» Which assumption to reject in the quantum case?
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Causal Structures - Classical and Quantum Cause

» Correlations between two space-like separated parties.

X Y

N

» Reconsider in light of Bell's theorem

» free choice of settings
» locality
» ‘“classical” notion of cause

» Which assumption to reject in the quantum case?

— Recent result: Explanations by means of classical causal
models require fine-tuning.

C. J. Wood & R. W. Spekkens, New J. Phys. 17, 2015.
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Causal Structures - Classical and Quantum Cause

» Certificates of non-classicality in device-independent

cryptography.

» Example: Key distribution protocol
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Particle Source
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Causal Structures - Classical and Quantum Cause

» Certificates of non-classicality in device-independent
cryptography.
» Example: Key distribution protocol

Particl
|_—_|Basis A article Source |_—_|Basis B
Key X
Key X’ Key Y~
K X7 Compare K v
ey Xc ey
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Causal Structures - Classical and Quantum Cause

» Certificates of non-classicality in device-independent

cryptography.

» Example: Key distribution protocol

Particle Source

Basis A Basis B
Key X e —
Key X’ Key Y7
\ Adversary
Key E
//’
Key X’ C°';§a'e Key Y”
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Causal Structures - Classical and Quantum Cause

» Certificates of non-classicality in device-independent
cryptography.
» Example: Key distribution protocol

Bacic A PartucleﬂSource Bacic B
Key X - R o T Key Y
Key X’ Key Y’
\ Adversary
- Compare |- Key E
Key X X? Key Yy

» Bell inequality violation involved: No classical causal
explanation for correlations.
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Causal Structures - Classical and Quantum Networks
Definition

A Causal Structure C js a set of nodes arranged in a
directed acyclic graph, a subset of which is observed.
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Causal Structures - Classical and Quantum Networks

Definition
A Causal Structure C js a set of nodes arranged in a
directed acyclic graph, a subset of which is observed.

Classical causal structures C©: Quantum causal structures CR:

» Observed «<—— random

» Nodes «+— random variables.
variables. » Unobserved «<—— quantum
states.

Pagxy = E Pxiac Py Bc PaPsPc Pasxy = tr((EX @ Fg )pc)PaPs
c
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Classical Causal Structures - Bayesian Networks
Compatibility of distribution of { X1, X5, .. .. Xn} with CC:

le...Xn — H PXilpa(Xi)'

Theorem (Pearl)

A probability distribution is compatible with C© iff every
variable X; is independent of its non-descendants
conditioned on its parents.

Example:

Pascxy = PxjacPy|Bc PaPsPc

J. Pearl, Causality. Cambridge University Press, 2009.
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Classical Causal Structures - Bayesian Networks
Compatibility of distribution of { X1, X5, .. .. Xn} with CC:

le...Xn — H PXilpa(Xi)'

Theorem (Pearl)

A probability distribution is compatible with C© iff every
variable X; is independent of its non-descendants
conditioned on its parents.

Example:

@/®\ /G)\O » Pclas = Pc,
c 8 » Pascy = Pa. Pglacx = Ps

» Px|Bvac = Pxjac. Py|axsc = Py |Bc.

Pascxy = PxjacPy|Bc PaPsPc

J. Pearl, Causality. Cambridge University Press, 2009.
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Entropy Vector Approach

— 3 H={H(Xy).....H(X,),

P
Sl H(X;X3),....,H(X;...X,) }

H(Xs)= - 3 Pxc(X:)10G5(Pxg(Xs))

» Conditional independences in C% as linear entropy equalities
I(Xi : nd(X;) | pa(Xi)) = 0.

» Convex cone I, (C%) of entropy vectors compatible with C©.

R. Yeung, |IEEE Trans. Inf. Th., 43, 1997.
R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.
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Entropy Vector Approach

» H={H(X;),....H(X,),
PXy...Xn H(G XY e s H (X1 .. %) }
H(Xs)= - 3 Pxc(X)10g2(Pxg(Xs))
» Conditional independences in C© as linear entropy equalities
I(X;i : nd(X;) | pa(Xi)) = 0.

» Convex cone I, (C%) of entropy vectors compatible with C©.

Question

Given an arbitrary entropy vector, does there exist a
corresponding probability distribution?

R. Yeung, IEEE Trans. Inf. Th., 43, 1997.
R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.
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Entropy Vector Approach

Necessary conditions: Shannon inequalities

—

—~

// » H(Xs) >0,
= » H(Xs|X7) =0,

/ »> I(XS : XT|Xu) > 0,
for Xs, X7+, Xu € {X1,X5,...,X,} disjoint.

Shannon Cone: I,, = {v = IR.22HO_1 | Msp.v > 0}.

» Infinitely many (linear) non—Shannon inequalities needed to
characterise T, for n > 4.

Reminder: Shannon’s entropy measures:
» H(Xs|X7+) = H(XsX7) — H(X7T).
> I(Xs : XTIXU) = H(XsXU) -+ H(XTXU) —_ H(XsXTXU) —_ H(Xu)

R. Yeung, IEEE Trans. Inf. Th. 43, 1997.
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Entropy Vector Approach

» Restrictions due to causal structure C©:

I(X; : nd(X;)| pa(X;)) = O.

™ (c9)={ver;|Mau(c®) v=
r(c®) ={ver,| M (c) v=

|
@)
——

- R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.
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Entropy Vector Approach

» Restrictions due to causal structure C©:

I(X; : nd(X;)| pa(X;)) = O.

(c9)={veriMa(c®) - v=0}. o

r (CC) — {v ey | Mo (CC) v

|
@)
——

» Consider marginal scenario M of observed {Xi, X5, ..., Xk }:

N _ k_
Projection maq : R2"—1 — R2"—1,

M (CY) = {w = R2 1 3v er*(CY) s.t. w = maq(v)},
Fa(CY) = {w = R2 11 3ver(c stow

|
3
<
<
—

R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.
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Entropy Vector Approach

© ™
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I(X:YZ) =0
(Y : XZ) =0
I(Z:XY)=0

I(X :YZ)=0

I(X:Y)=0
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Entropy Vector Approach
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Entropy Vector Approach

® ol[® ola 9@ ®

A B A A

@ G5 16 e

I(X:YZ)=0
(Y : XZ) =0 I(X:YZ)=0 I(X:Y)=0
I(Z:XY)=0

% C @ Additional inequalities, e.g.

5 A H(X|Y) + H(X|Z) = H(X),
é’j ICY : ZIX)+H(Y|X)+H(Z|X) = 3I(Y : Z).

T. Fritz, New J. Phys. 14, 2014.
R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012. =
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Entropy Vector Approach — Quantum Extension

Von Neumann entropy: H(p) = — tr(plog p).

R. Chaves et al. Nat. Commun., 6, 2015.
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Entropy Vector Approach — Quantum Extension

Von Neumann entropy: H(p) = — tr(plog p).

Outer approximation of marginal quantum cone:
» Inequalities derived using only observed variables from the

classical case.
» Less inequalities for unobserved quantum nodes:
» Conditional entropy may be negative.
» No conditioning on quantum parents.
» Data processing inequalities included instead.

— Convex cone [ a4 (CQ) approximates [ 4 (CQ).

Gy pe 2D
BN /A

R. Chaves et al. Nat. Commun., 6, 2015.
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Entropy Vector Approach — Quantum Extension

Von Neumann entropy: H(p) = — tr(plog p).

Outer approximation of marginal quantum cone:
» Inequalities derived using only observed variables from the

classical case.
» Less inequalities for unobserved quantum nodes:
» Conditional entropy may be negative.
» No conditioning on quantum parents.
» Data processing inequalities included instead.

— Convex cone [ a4 (CQ) approximates [ 4 (CQ).

 Cx Cy Additional inequalities, e.g.
Xy rc —¥) H(X|Y) + H(X|Z) = H(X),
B\ i
iy 1 but not:
B"’>z A I(Y : Z|X) + H(Y|X) + H(Z|X) = 3I(Y : Z).

Pirsa: 16090057 Page 28/47



Entropy Vector Approach — Classical versus Quantum

Pq

2

Question

Can a quantum causal structure C® be distinguished from
the classical C€ using the entropy vector method?

|
i
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Line-like Causal Structures
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Line-like Causal Structures

T heorem
For line-like causal structures, P,,, the classical and quantum
entropic cones coincide, i.e., for any n € NN,

Fu(PY) = Ta(PR).
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Non—Shannon Inequalities

» Complete characterisation of FT, for n = 4 unknown.
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Non—Shannon Inequalities

» Complete characterisation of I, for n > 4 unknown.
» Infinitely many independent non—Shannon inequalities known.

» First example:

Proposition (Zhang & Yeung)
For four discrete random variables T, U, V', and W,

— H(T)— H(U) — %H(V)+ —3—H(TU)+§H(TV)+ %H(TW)—l— —gH(UV)

+ %H(UW) — %H(VW) —2H(TUV) — %H( TUW) > 0.

£ £hang & R Yeung, IEEE Tiang. Ink Lh., 44, 298985
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Example: Triangle Causal Structure

Necessary conditions for entropy vectors H € '} ((C5):

» O6-variable Shannon constraints.

» Independences M :

yvyvyvyyy

(Y

/(A :
(B :
1(C :
I1(X :

1(Z :
I‘(C3C) = {V e le | M (Cg) -V = O}.

BCX) = 0,
ACY) = 0,
ABZ) = 0,

AYZ|BC) = 0,

. BXZ|AC) = 0,

CXY|AB) = 0.

R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.

Cx\\-\ C /_/D
B\/ A
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Example: Triangle Causal Structure

Necessary conditions for entropy vectors H € '} ((C¥’):

yvyvyvyyy

» 6-variable Shannon constraints.

Independences Mc

/(A :
(B :
1(C :
I1(X :
(Y :
1(Z :

I‘(C3C) = {V e le | M (Cg) -V = O}.

BCX) = 0,
ACY) = 0,
ABZ) = 0,

AYZ|BC) = 0,
BXZ|AC) = 0,
CXY|AB) = 0.

Cx\\-\ C /_/D

Projection to marginal scenario M of observed {X, Y, Z}:

ram(Cs) = {wers| Ma(CS)-w=0}.

R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.
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Example: Triangle Causal Structure

Constraints on Mxq(C$) = {W ez | Ma(CY) -w > O}:
» Shannon inequalities 3.
» Additional inequalities (and permutations) Mx(C5):
—H(X) — H(Y) — H(Z) + H(XY) + H(XZ) = 0,

—3H(X) — 3H(Y) — 3H(Z) + 2H(XY) + 2H(XZ) + 3H(YZ) — H(XYZ) > 0,
—5H(X) — 5H(Y) — 5H(Z) + 4H(XY) + 4H(XZ) + 4H(YZ) — 2H(XYZ) = 0.

Question

For the triangle causal structure, is the Shannon
approximation to the entropic cone tight, i.e., is

Fn(Cs) = Ta(C5) ?

~R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012. .
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Example: Triangle Causal Structure

Necessary conditions for entropy vectors H € I} ((C5):

» 6-variable Shannon constraints.

>

» Zhang & Yeung's inequality.

Independences Mcg

yvyvyvyy

I1(A :
(B :
I(C :
I(X :
(Y :
L

BCX) = 0,
ACY) = 0,
ABZ) = 0,
AYZ|BC) =
BXZ|AC) =
CXY|AB) = o

(

\2/

/)

(Cs) = {V € le | Mc (C3C) -v =0, Mzy (C?) s v > 0}.

Projection to marginal scenario M of observed {X. Y. Z}:

M (CS) = {w e 3| My (C5)-w=o0}.
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Example: Triangle Causal Structure — New Inequalities

» Inequalities derived from Zhang & Yeung's inequality (and
their permutations) approximate M (C5’) further:
—4H(X) — 4H(Y) — 4H(Z) + 3H(XY) + 3H(XZ) + 4H(YZ) — 2H(XYZ) > 0,
—2H(X) — 2H(Y) — 2H(Z) + 3H(XY) + 3H(XZ) + 3H(YZ) — 4H(XYZ) > 0,
—8H(X) — 8H(Y) — 8H(Z) + TH(XY) + TH(XZ) + 7TH(YZ) — 5SH(XYZ) > 0.

Ta(C5) # Ta(CS)
» Families of inequalities, for instance:

Proposition
For all s € N and permutations of X, Y, and Z,

(_%52_ gs) [H(X) + H(Z)] + (—s—1)H(Y) + (s*+2s) H(XZ)

+ (%sz+gs+1) [H(XY) + H(YZ)] + (—s2—2s—1) H(XYZ) > o.

Pirsa: 16090057 Page 38/47



Non-Shannon Inequalities for /nteresting Causal Structures

N7

J. Henson et al., New J. Phys. 16, 2014.
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Entropy Vector Approach & Non-Shannon Inequalities
» Non-Shannon inequalities tighten the entropic characterisation
of causal structures.

» Allow for a better distinction of different causal structures, for

instance

@ o] &
@ &

» Helps toward an understanding of whether there is classical
quantum separation in this approach.

» No quantum violations of classical entropic constraints found
in triangle scenario & provably non-classical correlations not

detected.
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Entropy Vector Approach

Open Problem

Is there a causal structure C, for which the classical and the
quantum entropy cones differ, i.e., is

Fu(CY) #Tu(C?) ?
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Related Methods Based on Entropy

» Condition on outputs of certain variables
H(Y|X)11 + H(X|Y )10 + H(X|Y)o1 — H(X|Y)oo = O,

where H(X|Y ).p is the conditional entropy of the conditional
distribution PXY|A=a,B=b-

DAV

Pxoxi1Yoy: = E Pxia=o0,c Pxja=1,c Py |B=0.c Py |B=1,c Pc.
c

S. Braunstein & C. Caves, Phys. Rev. Lett. 61, 1988.
R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.
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Related Methods Based on Entropy

» Condition on outputs of certain variables
H(Y|X)11 + H(X|Y )10 + H(X|Y)o1 — H(X|Y)oo = 0.

where H(X|Y ).p is the conditional entropy of the conditional
distribution PXY|A=a,B=b-

N N

Pxox1Yoy: = E Pxia=o0,c Pxja=1,c Py |B=0.c Py |B=1,c Pc.
c

» Technique applicable to other causal structures such as
bilocality.

S. Braunstein & C. Caves, Phys. Rev. Lett. 61, 1988.
R. Chaves & T. Fritz, Phys. Rev. A, 85, 2012.
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Related Methods Based on Entropy

» Condition on outputs of certain variables
H(Y|X)11 + H(X|Y )10 + H(X|Y)o1 — H(X|Y)oo = O,

where H(X|Y ).p is the conditional entropy of the conditional
distribution PXY|A=a,B=b-

AR

Pxox1Yoy: = E Pxia=o0,c Px|ja=1,c Py |B=0.c Py |B=1,c Pc.
c

» Technique applicable to other causal structures such as
bilocality.

» For causal structures without observed inputs not clear how
to apply this method, e.g. for the triangle causal structure.

S. Braunstein & C. Caves, Phys. Rev. Lett. 61, 1988.
~ R.Chaves & T. Fritz, Phys. Rev. A, 85, 2012. -~ -5 . -
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Conclusions

Pirsa: 16090057

Entropy vector approach useful for distinguishing different
causal structures.

Important classical — quantum separation in line-like causal
structures not detectable with the entropy vector approach.

Alternative methods: e.g. consider entropies conditioned on
values of outermost nodes.

Non-Shannon inequalities tighten the entropic description of
numerous causal structures & allow for them to be better
distinguished.

No quantum violations of classical entropic constraints found.

Open problem: can the entropy vector method ever
distinguish quantum from classical cause?
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