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Abstract: <p>Entanglement is fundamental to quantum mechanics. It is central to the EPR paradox and Bell&€™s inequality. Tensor network states
constructed with explicit entanglement structures have provided powerful new insights into many body quantum mechanics. In contrast, the saddle
points of conventional Feynman path integrals are not entangled, since they comprise a sequence of classical field configurations. The path integral
gives a clear picture of the emergence of classical physics through the constructive interference between such sequences, and a compelling scheme
for adding quantum corrections using diagrammatic expansions. We combine these two powerful and complementary perspectives by constructing
Feynman path integrals over sequences of matrix product states, such that the dominant paths support a degree of entanglement. We develop a
general formalism for such path integrals and give a couple of ssimple examplestoillustrate their utility [arXiv:1607.01778]. </p>
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Abstract:

Entanglement is fundamental to quantum mechanics. It is
central to the EPR paradox and Bell's inequality, and gives
robust criteria to compress the description of quantum
states. In contrast, the Feynman path integral shows that
quantum transition amplitudes can be calculated by summing
sequences of states that are not entangled at all. This
gives a clear picture of the emergence of classical physics
through the constructive interference between such
sequences. Accounting for entanglement is trickier and
requires perturbative and non-perturbative expansions.

We combine these two powerful and complementary insights
by constructing Feynman path integrals over sequences of
states with a bounded degree of entanglement.
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Towards a Path Integral over MPS

Goal: Import insights from tensor networks into a
path integral over tensor network states

T T e Qi T
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g?%‘ _f tg;}?gh X: g%%h (] g‘y ‘_' Eg;"h 8

Feynman Path Integral

Sum over classical/product state trajectories

Sequence of classical /product state field configurations
Can we do the same with weakly entangled states?
Sequence of weakly entangled field configurations.
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Towards a Path Integral over MPS

Goal and Central Idea

Z=Tre PH .
Al 1=/ o

. / D,dje,]. dr {(’t/) |0+ ) — {2 ]”}:L }1/))}

Feynman Path Integral

Sum over classical/product state trajectories
Insert resolutions of identity over over-complete set
Usually |1)) product states

* Can we do the same with weakly entangled states?
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Towards a Path Integral over MPS

Goal and Central Idea
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Feynman Path Integral

Sum over classical/product state trajectories
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Towards a Path Integral over MPS

Goal and Central Idea

Z=Tre P .
WIS / DAJA)(A]

/' DA of dr](Al0-A) (A1 4)]

Feynman Path Integral

Sum over classical/product state trajectories

Insert resolutions of identity over over-complete set
* Usually [?) product states

Can we do the same with weakly entangled states?
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Towards a Path Integral over MPS

Goal and Central Idea

Z=Tre P .
ISy 15 / DAJA)(A]

/' DA of dr](Al0- A) (Al 4)]

Feynman Pat| Q. What is the Measure?

. " 9Q. Is the theory local? b set
© Usudl @ What is the Berry Phase?

Can

ps?
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Towards a Path Integral over MPS

Goal and Central Idea

Z="Tre PH
— / DA et dr[(A|0; A)—(A|H|A)]

Insights and New Perspectives
Saddle points equations 0S/0A =0 = TDVP
+ Saddlepoints with features not present in product states
* Not always adiabatically connected to product states
Instantons @ X=1 => Saddle point at X >1
+ Deconfined criticality => Ginzburg-Landau in A
* Perturbative corrections to MPS?
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Technical Background

Tensor Networks

* Class of variational wavefunctions

« Embody insights about entanglement structure

« Describe groundstates of local Hamiltonians efficiently
« Exact for some model H (AKLT, Majumdar-Ghosh, etc)

Matrix Product States Projected Entangled Pair States

) Z A4S AC? .|01,02,03,04,...) **%i ' ,,A;

H!F! Hﬂ

* Tensor networks are a restricted sum of product states
* Over-complete cover of Hilbert space
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Technical Background

Time dependence of Tensor Network States

* Bond-order grows under Hamiltonian evolution

* TDVP: Continually Project back to fixed bond order

* Resulting equations are semi-classical

* Variational manifold forms a semi-classical phase space

A

Variational
Sub-manifold

Hilbert Space

(04,9104,9)A; = (04,0 |¢)

[Haegeman et al PRL 2011]
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Technical Background

Time dependence of Tensor Network States

* Bond-order grows under Hamiltonian evolution

* TDVP: Continually Project back to fixed bond order

* Resulting equations are semi-classical

* Variational manifold forms a semi-classical phase space

—_—

Variational .
Sub-manifold Hilbert Space

Manifold ~ semi-classical phase space
Required when tunnelling/instantons drive physics
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Technical Background

Entanglement Structure vs Tunnelling Trajectories

* Tensor networks are a restricted sum of product states
* Transfer weight => tunnelling between product states

e.g. 2 spins H = Jo| - 02 start with | T1)

* MPS description: [¢) =nilli,lz) +n2| — 1, —1y)

* Product States: Imaginary time excursions/instantons
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Technical Background

Entanglement Structure vs Tunnelling Trajectories

* Tensor networks are a restricted sum of product states
« Transfer weight => tunnelling between product states

e.g. 2 spins H = Jo| - 0y start with | 1)

«  MPS description: [¢) = nilli, L) +na| =1, —la) = = 1) 4

* Product States: Imaginary time excursions/instantons
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Technical Background

Instantons in MPS Field Theory

« Disconnected configurations for product states
* Smooth field/tensor for MPS
« Instantons at Y -> semi-classical configurations at X =~ X0

Two Ways to Include Q Fluctuations in Field Theory

* i. Expand about semi-classical saddle point
* ii. Increase bond-order of field integral.
« Complementary - use simultaneously for different effects
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Technical Background

Locality and Contractibility

« Expectations of local operators are non-local in terms of An
* However, result of contracting to left or righf is finite tensor \\
« Expectations are local in terms of {A,,a

o TTTEETIL

Environment: ui Ul =1

* Finite amount of data in 1d

LIT-6 3-TIT- wiw- g
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Technical Background

Locality and Contractibility

- Expectations of local operators are non-local in terms of An
* However, result of contracting to left or righi‘ is finite tensor \\ ,,
« Expectations are local in terms of {A )

Environment: ui Ul =1

 Difference equation

(2 -C 3-T33 wiw- fid]

Z A" Finite contractibility => Local Field Path Integral
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Formulating the Path Integral

MPS data
a4
Z=Tre P" = | [DAJe 54l
r7{1} 1y

The Measure:

Unitary acting on
reference spin state v
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Formulating the Path Integral

MPS data
Sy
Z=Tre ™= [[DAle™>"
ﬂ/ﬂ’q%\}ﬂ

The Measure:

Unitary acting on
reference spin state v
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Formulating the Path Integral

MPS data

Z=Tre P = /[DA]Q_S[A]
2l

Locality:
Field theory is not local just in terms of A
Introduce extra fields /\ to describe the environment.
Introduce /\ with ¢ -functional constraint

An—l E::: E jr\” Z Af’lnvi‘A”_lfln — A“

Pirsa: 16090032 Page 24/53



Formulating the Path Integral

Z = TrePH = / DA DA S [A, — f(An, Ani)] o—SIAA]

Berry Phase:

Geometrical term in action - also local

<(,:-""‘('), (‘) = Z Tr [At:-l-An _10 A:} 7 +

o
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Formulating the Path Integral

i T*]-mg'H = / DA DA § [A” = .f(A'NA An—-l_)] (}_-S[A.A]

Berry Phase:

Geometrical term in action - also local

(Y|0p) = Z Tr [A‘:"-A,, 10, 4‘:} = +

a
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Towards a Path Integral over MPS

Goal and Central Idea

Z="Tre P*H
— / DA el dr[(A|0; A)—(A|H|A)]

Insights and New Perspectives
Saddle points equations 0S/0A =0 = TDVP
Saddlepoints with features not present in product states
* Not always adiabatically connected to product states
« Instantons @ X=1 => Saddle point at X>1
+ Deconfined criticality => Ginzburg-Landau in A
* Perturbative corrections to MPS?
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Illustrative Examples

* Any entanglement in path integral => new physics
* Restricted form illustrates utility of approach

* Include local singlets and triplets

* AKkin to translationally invariant bond operators

; : . Singlet vs triplet order
Simple Parametrization e p

‘ 4
0 M) ngl—1)
|A) Z A% o) | 1) 0 0 ¥---}---- Spin coherent

| S ) 0 states

\

A; = diag (N, (1 - /\,)\1:1 HE (1 - Ai)|ng l\"’)
alternate )\, = \, \. =1 -\ from site to site

Berry Phase
S!f — Z / (/, [/\‘-<11111f> _{_ (/\! l“,r? | + /\‘N;)<l"1’>
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Illustrative Examples

* Any entanglement in path integral => new physics
* Restricted form illustrates utility of approach

* Include local singlets and triplets

* AKkin to translationally invariant bond operators

) . ] Singlet vs triplet order
Simple Parametrization casile P

" S |
0 M) ngl—1)
4) = ¥ A%|o) | nH 0 0 ¥---}---- Spin coherent

P ) 0 0 states

\

A; = diag (N, (1 — /\,)\1:1 H2, (1 - Ai)|ng l\"’)
alternate )\, = \, \; =1 -\ from site to site

Berry Phase
Sp = Z / & [/\4’(11:1.1/) + (Aimini_y + Ainf) (LiL)
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Illustrative Examples

* Any entanglement in path integral => new physics
* Restricted form illustrates utility of approach

* Include local singlets and triplets

* AKkin to translationally invariant bond operators

) . . Singlet vs triplet order
Simple Parametrization o p

v <
0 M) ngl—1)
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I 0 0 states
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Illustrative Examples

a) Columnar VBS - Neel
T

“Deconfined g |

s Critical” Ay ‘
| | '
| ——j | ¥ ﬁ I ; e i ‘
~b'3- >3/ T MPS —>» direction

* No Conventional Ginzburg-Landau theory

* Quasi 1D - entanglement mainly in horizontal direction
- MPS description => parametrize both phases

* Entanglement is a Ginzburg-Landau order parameter

« Construct critical theory in terms of MPS tensors
[Senthil, et al Science (2004), PRB (2004)]
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Illustrative Examples

* Any entanglement in path integral => new physics
* Restricted form illustrates utility of approach

* Include local singlets and triplets

* AKkin to translationally invariant bond operators

: : ) Singlet vs triplet order
Simple Parametrization - p

: 4
0 M) ngl—1)
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Illustrative Examples

a) Columnar VBS - Neel
T

“Deconfined el
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* No Conventional Ginzburg-Landau theory

* Quasi 1D - entanglement mainly in horizontal direction
- MPS description => parametrize both phases

* Entanglement is a Ginzburg-Landau order parameter

« Construct critical theory in terms of MPS tensors
[Senthil, et al Science (2004), PRB (2004)]
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Illustrative Examples
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Illustrative Examples

a) Columnar VBS - Neel

T A H ,/_12(7,.@} i ,/,;Z(’T,ﬁ,;
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L Critical” 7 i ¥ | ‘
a= i3 HH
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Illustrative Examples

b) J,-J, Model:
H = Z [.]1(3’,'.('},‘+l + '}2(}5-(-}J+2]

P J2

Spfiml

~___— Majumdar-Ghosh

J2fJ1 = (.5

Ferromag Anti-ferromagnet

* Coherent state solution => incomensurate spiral

+ Instantons proliferate and drive dimerisation when J,>0

* Can capture with MPS field theory

* (would not be possible with conventional bond operators)

* Fluctuations determine entanglement via Q Order-by-Disorder
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Outline:

* General Formulation
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General Formulation

Geometry of the Berry Phase

* Appealing geometrical interpretation for single spin
* Area of periodic path => quantization of spin
« Expect similar interpretation for MPS

Small Paths: Product States

« Expand in the vicinity of a reference state n
¢ nN= 11”\/1 —112+1,n0-1=0, 1 =1; +ily

S ' &
S = — dt dr,, - Oyn,, X 0N,
5 = 2 ’2/ / ,
=3 /dl/;*;f,,
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General Formulation

Small Paths: MPS

« Expand in vicinity of reference state

« Reference MPS and tangent vectors Compare with
[Ay= Y LATATATH. |0, on,05..) ng
(- 8 7 -
IdA,,) Z AT AT AT 01,02, 03...) 1
(7} i
* Gauge fix - overlap local and orthonormal ny-1=0

* Parameterize by D x (d-1)D matrix «(f)

* Berry Phase Sp Z / dtTr(z! i ,) Z /r/// /,,

@,.(f) Details: [Haegeman et aI PRL 2011]
3 Choose f/\ () \ “eAp

exl
i 3 where /""" is a matrix of (d- I)D ddD
Variationa Hilbert Space dumensuon null vectors of (. o U, T

Sub-manifold Reshaped according to(A'A;
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General Formulation

General Path: Product States

* General parametrization of manifold; n or spinor 1”
* Berry phase

q . '] . )
kq;' — It l n ' ) n 7 8 n — It il
J ln;,/( '/”rrn ain,, X d;n ;/( N, N,
* Comparing with previous spinwave expansion
Sp = Z /(H lf',l',, >Z /(H ufl'hﬁ [, — fn,::
General Path: MPS
* Anticipate

Sp=Y / dt Trizlan] — ) / dt Tr(z51 7]

Identify general parametrization =, — z;
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General Formulation

General Path: MPS

* MPO contains reference MPS and tangent vectors

=1
Y )
PRy L R, Wy
(/-‘1”{(.’ ) — “]f._/ .’J-!; i\f",

Generic point on manifold - alternative representation

o 9 o8 _Q / | J;f'_’
"lif(n)('*) B "lf.j{n)"_/l.'{u)‘ kl(n)?®

* Constraints

d
4 T L L/ LU/ 4
al T .rT,H ~ M | AT T L)
‘\[“] - n)7(n) ‘l[u-ll"(n‘lr" lrr'll‘l (n+1) Zf'r| < | .
|

(&

Réduceé 1'6 CP.1 .
at bond—orde_r 1

Sub-manifold

Pirsa: 16090032 Page 44/53



General Formulation

General Path: MPS

* Generic point on manifold
a o T (X . Y 4 1/2
"1#(”)(") o "1&)(”)"_/1-'{”)"\i.'!(u)'

* Berry Phase ,
Sp = ZZ / dt ’[‘r{:{‘”)"if'”)_]
* Partition Function

Z = / Dz 6 {:”"L;” — ;l””:“.:“'i'.-l””"'} ) {’[‘r[:”'i_:} — 1} e~ S

Reduces to CP1 |
at bond—orde_r 1

i 9 ( (
‘4 ~ . '
~ ’ .
= v b~ Il .
o \ \ / '
P \ ] '
\ \ g '
[
.
bt . Y
.

Variationa Hilbert Space
Sub-manifold
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General Formulation

Non-locality of Berry Phase
* MPO diagonalize H - generate eigenstates from L-bits

= Zur +Zﬁ,,TT +Z ;,,LTTTA .....

inghly non-local 1) |1> T TR ol 1)

in spins #,- * A

* Restrict to coherent/product states of L-bits [©) = |5, 7., ...)
* Berry Phase: {; Z / dt (|0,

* Recover with the choice -7, =1"A;/"
i Z= / Dné[|n?|* — 1e St
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Outline:

* Discussion and Conclusions
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Discussion

Extension to Higher Dimensions

One dimension

« MPS: Environment A finite in one dimension
« States finitely contractible t~Poly[N]

* May always find canonical gauge

* Field theory local in {4, .A,}

Higher Dimensions

* Finite depth circuit is finitely contractible in any dimension
« Easy to write a field theory for these..
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Discussion

Field Theory RG vs Tensor Network RG

Various RG Schemes

MERA (multiscale entanglement renormalization ansatz) [Vidal, PRL99, 220405(2007)]
TRG (tensor RG) [Verstrate et al, Adv. Phys 57, 143 (2008)]

SRG (second RG) [Xie et al PRL103, 16069 (2009)]

HOTRG (higher order TRG) [Xie et al PRB86, 045139 (2012)]

Exact Holographic Mapping [Xiao-Liang Qi[ArXiv:1309.6282]

Y AT

“
>
Wavelet/RG trans el e
of boundary|/), H <y L
and ¢ to bulk
““"rh.m

« Relation to AdS/CFT [Swingle, Phys. Rev. D 86, 065007 (2012),ArXiv:1209.3304]
Applying RG to field theory over MPS ->[s.-S. Lee,NPB 832,56 (2010); 851,143(2011)]
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Environmental Restriction of Entanglement

Quantum Langevin Equation for Entangled States
1‘ (XX

\

b | = €

(nn) (XX)* = 29T

Variational ﬁz m&

Sub-manifold

(e.g. fixed D MPS) Hilbert Space
TDVP Fluctuation
—1<()10L (_,""'I" (.),lﬂ 'L"‘;’>Aﬁ — <(.)‘.1a 'l,-""‘l’ H 'l,-""‘"> —|—'"} * (.)‘,10 F(Z[ F -+ "1/(')‘,1(1 F:

Dissipation
* Couple to bosonic bath via (Hiut)gpins = XF(A)
* Derive from Keldysh field theory over MPS states
* Environmental restriction of useable entanglement
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Conclusions

Path Integral over Tensor Network States MP/S data

Z:ﬂw”H:/WMF&”

Imports insights about en'fanglemenf to field theory
Instantons => saddles of higher bond order
Managed for 1d - exploring applications and extensions
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Conclusions

Path Integral over Tensor Network States = MPS data
i, S

zznm””=/wmfﬁﬂ :

Imports insights about en'fanglemenf to field theory
Instantons => saddles of higher bond order
Managed for 1d - exploring applications and extensions
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