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Abstract: <p>Aretakis discovery of a horizon instability of extremal black holes came as something of a surprise given earlier proofs that individual
frequency modes are bounded. Is this kind of instability invisible to frequency-domain analysis? The answer is no: We show that the horizon
instability can be recovered in a mode analysis as a branch point at the horizon frequency. We use the approach to generalize to nonaxisymmetric
gravitational perturbations and reveal that certain Weyl scalars are unbounded in time on the horizon. We will also discuss new results showing
how the instability manifests for * nearly* extremal black holes: long-lived quasinormal modes collectively give rise to a transient period of growth
near the horizon. This period lasts arbitrarily long in the extremal limit, reproducing the Aretakis instability precisely on the horizon. We interpret
these resultsin terms of near-horizon geometry and discuss potential astrophysical implications.</p>
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Motivation

+ In 2010 Aretakis proved that extremal black holes are
linearly unstable. His proof

- restricted to axisymmetric perturbations,
* Involved conserved quantities on the horizon,
- and applied only to precisely extremal black holes.

+ Since his discovery, despite much work, research has
largely been within his initial restrictions
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Our work
- We

+ recover the Aretakis instability in a mode expansion (as
a branch point at the superradiant bound),

+extend to nonaxisymmetric perturbations and reveal
curvature growth,

+ and connect to the long-lived QNMs of near-extremal
Kerr which exhibit a transient instability that limits to
Aretakis.
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Background
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Kerr black holes

- The Kerr solution is the unique stationary asymptotically flat
vacuum solution

- Two parameters: spin and mass

Killing fields @, and Op. Generators § = Oy + Qg 0y,
- Type D

+ Shear-free principal null congruence

Radiative perturbations are encoded in a single scalar field
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Extremal black holes

+ Parameters are saturated (a=M in Kerr)

- Enhanced symmetries (Kerr/CFT)
- SL(2,R) x U(1)

- Vanishing surface gravity (zero Hawking temperature)
- redshift effect e "7 — 1

- Conserved quantities
- infinite number of charges (Aretakis constants)
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Extremal limits

-+ The limit to extremality isn’t unique.
Letting a — M at fixed Kerr coordinates = extremal Kerr

Letting a = M at fixed “scaled coordinates” = NHEK
spacetime with AdS asymptotics and enhanced
symmetry

+The limits are singularly related but give smooth metrics
In each region.
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Perturbations of Kerr

+ Teukolsky master equation Lg[€2s] = 0
2s defined in a tetrad regular on H
-+ Sectors
- Gravitational Q4.9 <> {Uy, ¥g},
+ Electromagnetic Q41 <> {02, ¢o},

« Scalar g < @
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Green function for §2

spheroidal harmonics (SL problem)
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Stability of Extremal Kerr

- Consider Kerr geometry with a=M and evolve small
amplitude initial data (e.g. massless scalar).

- Does the solution grow large enough to back-react?

+ Mode stability (Whiting, 1989) forbids exponentially
growing modes, but doesn’t prove boundedness of
generic perturbations.

-+ Aretakis (2010) shows axisymmetric perturbations decay
but transverse derivatives blow up polynomially on the
event horizon. Lucietti and Reall extend to gravity (2012).
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Mode analysis deficiency?

+ |s the Aretakis horizon instability invisible to a mode
analysis”?

* No. The derivative instability at the horizon is
recovered as a branch point in the complex frequency
plane.

+ The mode technique allows us to predict the growth
of all modes.
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The Laplace transform and linear stability

¢ = (G o (data)

+ The late-time linear response is dictated by singular
points of its transfer (Green) function in the complex
frequency plane.

- Mode stability - lack of singular points in the upper
half plane

- No exponentially growing modes.
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Matched asymptotic expansion

Construct geme from homogeneous solutions via the
method of matched asymptotic expansions.

validfor k=w-m/2<K1

Asvmptotic reaions
Yy J Horizonat x = 0

Near zone = <1

A4t

buffer
Far zone x>k

SR A

near far
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Extremal Kerr transfer function
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generates growth

+ The branch point at the superradiant bound frequency
k=0 determines the late-time solution.

+ The character of the singularity is determined by the
conformal weight H.
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Conformal Weight

- The conformal weight labels representations of the near-
horizon symmetry group, SL(2,R).

- At the superradiant bound, the highest weight solution
has conformal weight given by

(= 1/2+ib, |m|> .74¢ (dominant),
His ¢ >1,&¢7Z, 0<|m|<.74¢ (subdominant),
| = {+1, m = ( (axisymmetry).
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Growth rates on the event horizon

Nonaxisymmetric perturbations (compact data off #)

,“'H.—}—H— 1 /2’

ComplexH | Q") ~ v — 00

Real H Slg”') ~ s H gy 0. H > 1

A ~ B meaning asymptotic equality up to a bounded function
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Growth rates on the event horizon (s=2)

Axisymmetric perturbations (compact far-horizon data)

n I
when \IJEl ) ~ VT4 v = 00
n=4¢-1¢(-2

] trl’ ! T #
otherwise \1151 )~ gm £, v — o0

Consistent with Lucietti and Reall’s weak estimates for gravity.
Jump predicted by Aretakis.
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Growth rates on the event horizon (s=2)

Axisymmetric perturbations (compact far-horizon data)

n —
when \IJEl ) ~ VT4 U= 00
n=~¢-1,¢(-2

] (rl’ ! T #
otherwise \1151 )~ gm £, v — o0
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The nonaxisymmetric modes yield the dominate
horizon growth.

Infalling observers (earth probes) measure:

energy density ~ v

tidal fields ~ v3/2
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Explanation of derivative growth

- Off the horizon, the (scalar) field decays slower
(1/v). The jump in the decay at the horizon
explains the derivative growth.

simple example ~ f(v,z) = e **

Imore generally any self-similar field]
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Near-extremal Kerr
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Near-extremal Kerr black holes

Small but finite surface gravity

o=2/1-a?/M? <1

Near horizon modes

QAI((.U - ’IH,Q”)
a

W =
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Long-lived quasinormal modes

Extended “ringing” of nearly extremal Kerr (Detweiler, 1980)

Wn — ’!'H,QH -+ ()(O')

+ The collective excitation of weakly damped overtones
slows decay (transiently) from exponential to power

|8.W. (Glampedakis and Andersson 2008, Yang et al 2013, Burko and Khanna 2016)

+ The modes vanish in the extremal limit (no real, non-
superradiant QNMs) and the branch point “emerges”
at the superradiant bound.
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Near horizon QNM response

We perform overtone sum for dominant modes (complex
H)

- At early times on the horizon

SZE‘.‘!) ~ 'Ud_l/zJ”", v l/o,

and slightly off the horizon

/2-5

‘ Trv —1/2
SZ‘(H_”'-)“_-'-(:'! 1/2+s (1—{—%) . VK 1/0’, r < o,
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Transient instability

1

Fields grow until  vmax =0~

then decay exponentially
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Physical effects - scalars (s=0)

Amplification of fields

Old) ~ F1/2=s=d 5. 4~ g

S

Large energy density

Quadratic 7}, implies

L -1
Pobs = Tyufu” ~ o™ — oo.
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Physical effects - E&M (|s|=1)

- Amplification of fields

Q) ~ gl/2=s=d {51 4~ g

S

Electromagnetic field

- Charge particles experience large Lorentz forces

Fur o o~1/2

Possible non-linear QED effects (Schwinger pairs)
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Physical effects - gravity (|s|=2)

- Amplification of fields

Q) ~ gl/2=s=d (5 4~ g

S

Gravitational fields Q2 « W4 = Cpmnim ~ g—3/2

1/2
9—2 X \IIU = CE'.'nEfn =0 /

Enhancement of tidal fields (probably minor relative to
background tides)
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Transient Instability
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Summary and rules of thumb

Potentials
((I)v A;m h';u/) ~ 0'.1/2
Fields
(Vu®, Fpup, I'9,,) ~ F—1/2
Curvatures

5 . I ~3/2
(v;:.vu(b: d * }‘a C,'r.um“i) ~ O /

a4
Umax ™~ 0

Pirsa: 16080091 Page 31/38



Limiting geometries - earth adapted limit

« Far horizon limit

+ Fix ingoing Kerr coordinates z* = (v,z,0, ) and
take o — 0

- Faithful to earthlings and the probes they drop into the
black hole

Puts physically interesting unstable orbits (IBCOs) on
the horizon with an infinite boost.
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Limiting geometries - Miller adapted limit

Near horizon limit
+ Fix ingoing scaled coordinates
ot = (ov,x/0,0,0 — v)
and take o — ()

- Faithful to Millerites and the probes they drop into the black
hole but puts earth at infinity.

+ The near horizon region is singularly related to the far
horizon region in the extremal limit!
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Simple explanation - singular limits

Fields with a smooth near-horizon limit look
singular to far-zone observers.

Far-horizon adapted (regular) initial data generically
excites near horizon modes

=> sufficiently high-order derivatives blow up as
measure by far probes.

derivatives => 0, = o 10;
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Near horizon/far horizon cross-talk

Far horizon initial data excites Near horizon modes

GNHM = 201/2—3—15+img£m(3—:p’ m;u)’

m

Self-similar scaling predicted by near horizon symmetry
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Turbulence criterion

Non-linear resonances among the integer-spaced near
horizon QMNSs leads to a turbulent-esque cascade

Yang et.al (2015) estimated a Reynolds number assuming
that the driving perturbation is the lowest overtone.

- The coherent excitation will likely lower the Reynolds
number

Extrapolating the scaling of Psi4

U, ~032 — h~ol/? — R~o Y2 5 x
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Open questions

- Extremal Kerr

- What are the rates when we consider initial data
that penetrates the horizon?

+ Can we find nonaxisymmetric conserved quantities
on the horizon? If so, are they related to asymptotic
symmetries?

- Is there a chiral CFT analog of the instability?

Pirsa: 16080091 Page 37/38



Open questions

Non-extremal Kerr
- What happens non-linearly?

- Are there observational consequences of the transient
phase?

Synchrotron signatures in emission lines?

Turbulent gravitational waveforms?

777
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