Title: Hydrodynamic theory of quantum fluctuating superconductivity

Date: Aug 26, 2016 09:30 AM

URL: http://pirsa.org/16080051

Abstract: A hydrodynamic theory of transport in quantum mechanically phase-disordered superconductors is possible when supercurrent relaxation can be treated as a slow process. We obtain general results for the frequency-dependent conductivity of such a regime. With time-reversal invariance, the conductivity is characterized by a Drude-like peak, with width given by the supercurrent relaxation rate. Using the memory matrix formalism, we obtain a formula for this width (and hence also the dc resistivity) when the supercurrent is relaxed by short range Coulomb interactions. This leads to a new -- effective field theoretic and fully quantum -- derivation of a classic result on flux flow resistance. With strong breaking of time-reversal invariance, the optical conductivity exhibits what we call a 'hydrodynamic supercyclotron' resonance. We obtain the frequency and decay rate of this resonance for the case of supercurrent relaxation due to an emergent Chern-Simons gauge field. The supercurrent decay rate in this 'topologically ordered superfluid vortex liquid' is determined by the conductivities of the normal component of the liquid. Our work gives a controlled framework for low temperature metallic phases arising from phase-disordered superconductivity.

Pirsa: 16080051 Page 1/38

Hydrodynamic theory of quantum fluctuating superconductivity

Blaise Goutéraux

Stanford U. and APC, CNRS Paris

Friday Aug 26, 2016

Low energy challenges for high energy physicists Perimeter Institute, Waterloo, Canada

Pirsa: 16080051 Page 2/38

Acknowledgments

 Based on 'Hydrodynamics theory of quantum fluctuating superconductivity', arXiv:1602.08171, Phys. Rev. B 94, 054502 (2016) together with Richard Davison, Luca Delacrétaz and Sean Hartnoll

• My research is supported by a Marie Curie International Outgoing Fellowship, Seventh European Community Framework Programme.

2

Pirsa: 16080051 Page 3/38

Infinite vs finite DC conductivities

• If a conserved quantity (momentum) overlaps with the electric current, the electric conductivity at zero frequency diverges. For instance, in relativistic hydrodynamics:

$$\sigma(\omega) = \sigma_Q + rac{i
ho^2}{(\epsilon + p)\omega}, \quad J^\mu =
ho u^\mu - T\sigma_Q \partial_\mu \left(rac{\mu}{T}
ight)$$

The divergence is due to momentum conservation.

 σ_Q is the conductivity of the diffusive dofs of the system (no overlap with momentum) [DAVISON, B.G. & HARTNOLL'15].

• If momentum is slowly relaxed $\Gamma \ll T$:

$$\sigma(\omega) = \sigma_1 + \frac{\rho^2}{(\epsilon + \rho)(\Gamma - i\omega)}$$
.

A lot of work recently in gauge/gravity duality and hydrodynamics to model this $[HARTNOLL\ ET]$

0.2 0.4 0.6 0.8 1.0 1.2 1.4 ω

AL'07, DAVISON & B.G'15, LUCAS'15].

Pirsa: 16080051

Superfluidity

- In a superfluid, a U(1) symmetry is spontaneously broken: a complex order parameter condenses.
- Its phase is a Goldstone boson and by gauge invariance

$$\dot{\phi} = -\mu$$

Taking a spatial derivative

$$\dot{u}_{\phi} = -rac{1}{m}
abla \mu\,, \qquad u_{\phi} = rac{1}{m}
abla \phi\,,$$

A phase gradient sources an electric field! The (conserved) superfluid current couples to the electric current.

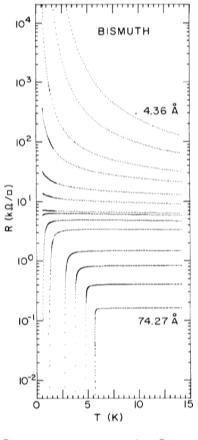
The electric conductivity contains a superfluid delta function

$$\sigma(\omega) = \sigma_0 + \frac{i\rho_s}{m^2\omega}$$

• Is there a sense in which this delta function can be resolved?

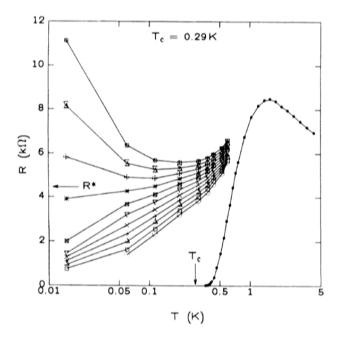
Pirsa: 16080051

Superfluid/insulator transitions in thin superfluid films



[HAVILAND ET AL'89]

2D superfluid films exhibit two different kinds of (quantum) superfluid/insulator phase transition, disorder or magnetic field-driven.

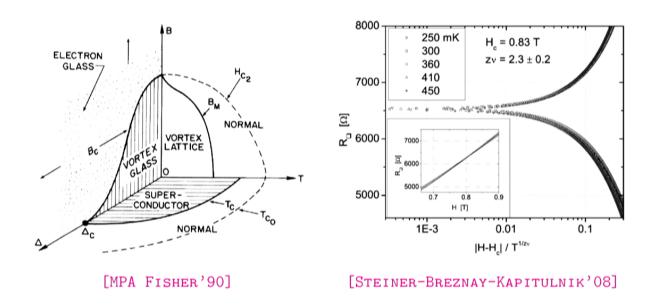


[HEBARD & PAALANEN'90]

5

Pirsa: 16080051 Page 6/38

Phase diagram of SIT – early days

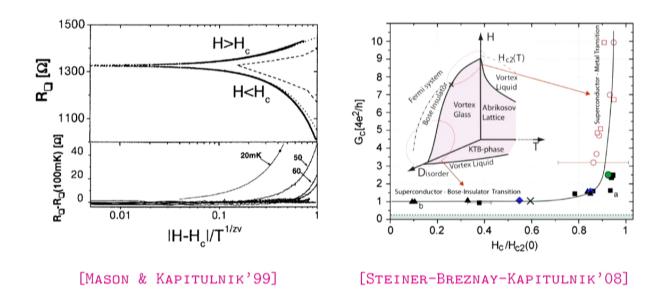


A quantum critical point sits at the SIT. At this quantum critical point, the resistivity takes a universal value $R_Q = h/4e^2$ and a scaling theory of transport applies [MPA FISHER'90].

6

Pirsa: 16080051 Page 7/38

A surprise: intermediate metallic phases



For weakly disordered films, the quantum critical resistivity differs from R_Q and scaling does not apply at low temperatures.

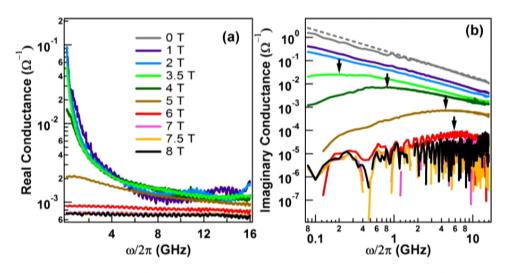
The resistivity becomes temperature independent over a range of fields: intermediate metallic phase between superfluid and insulator.

7

Pirsa: 16080051 Page 8/38

AC measurements: peaks in the conductivity

Sharp Drude-like peaks appear in the real part of the conductivity. The superfluid $1/\omega$ pole in the imaginary part is resolved.



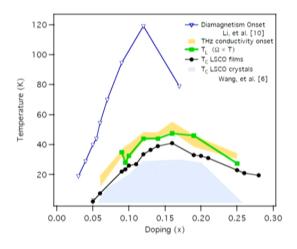
[Liu-Pan-Wen-Kim-Sambandamurthy-Armitage'13]

8

Pirsa: 16080051 Page 9/38

Cuprates

Superfluid phase fluctuations are also important in the phase diagram of the underdoped cuprates (here LSCO).



[BILBRO ET AL, NATURE PHYSICS 7, 2011]

10

Pirsa: 16080051 Page 10/38

Plan of the talk

- Construct a theory of superfluid hydrodynamics which includes weak phase relaxation.
- Match it to a memory matrix treatment (exact, no approximation) and use this to calculate the width of the peak and the DC conductivity when the phase fluctuations are weak.
- First restrict to parity invariant setups (no magnetic field), then move on to parity-violating systems.

11

Pirsa: 16080051 Page 11/38

Incoherent superfluid hydrodynamics

- Hydrodynamics is the universal long wavelength, small frequencies description of the dynamics.
 dofs: conserved quantities and broken symmetry Goldstone modes.
- Work in the incoherent limit [HARTNOLL'14]: due to fast momentum relaxation by disorder, momentum is short lived and not part of the hydro.
- We do include the Goldstone mode of the spontaneously broken U(1) symmetry (eg phase of the complex scalar order parameter).
 By gauge invariance, it couples to the chemical potential as

$$\dot{\phi} = -\mu$$

This Josephson equation gets corrected at higher order in derivatives.

Incoherent superfluid hydrodynamics

- Our set of hydrodynamic variables are the energy and charge density as well as superfluid velocity $(\delta \epsilon, \delta \rho, u_{\phi} = \nabla \phi/m)$.
- The equations of motion are the conservation of energy and charge

$$\partial_t \delta \epsilon + \nabla \cdot j_E = 0, \qquad \partial_t \delta \rho + \nabla \cdot j = 0$$

 Supplemented by constitutive relations for the charge and heat currents + Josephson relation for the superfluid velocity

$$j = \frac{\rho_s}{m} u_{\phi} - \sigma_0 \nabla \mu - \alpha_0 \nabla T$$
$$\frac{1}{T} j_Q = \alpha_0 \nabla \mu - \bar{\kappa}_0 \frac{\nabla T}{T}$$
$$\partial_t u_{\phi} = -\frac{1}{m} \nabla \mu + \frac{\xi}{m} \rho_s \nabla (\nabla \cdot u_{\phi})$$

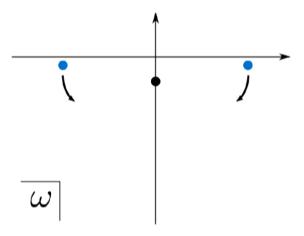
Incoherent superfluid conductivities

The conductivities are (by Kadanoff and Martin)

$$\sigma = \sigma_0 + \frac{i\rho_s}{m^2\omega}, \quad \alpha = \bar{\alpha} = \alpha_0, \quad \bar{\kappa} = \bar{\kappa}_0$$

No phase relaxation yet, so infinite DC electric conductivity: **superfluidity**.

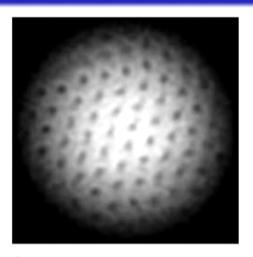
 The collective excitations are a thermal diffusion mode and two superfluid second sound modes.



[CREDIT: LUCA V. DELACRÉTAZ (STANFORD)]

Vortices in two dimensions

- At finite temperature, vortices can proliferate due to thermal fluctuations and destroy quasi long range order (BKT transition).
- At a vortex, the amplitude of the order parameter vanishes.



[CREDIT: ANDRE SCHIROTZEK (MIT)]

 This requires that the circulation of the superfluid velocity is quantized

$$\oint_{\text{vortex}} u_{\phi} = \frac{2\pi n}{m}$$

 At a vortex location, the superfluid velocity is no longer a pure gradient

$$u_{\phi} = \frac{1}{m} (\nabla \phi + \epsilon \times \nabla \psi)$$

Incoherent superfluid hydrodynamics

- Our set of hydrodynamic variables are the energy and charge density as well as superfluid velocity $(\delta \epsilon, \delta \rho, u_{\phi} = \nabla \phi/m)$.
- The equations of motion are the conservation of energy and charge

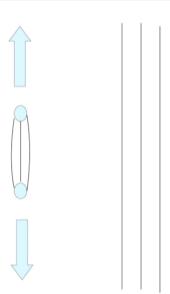
$$\partial_t \delta \epsilon + \nabla \cdot j_E = 0, \qquad \partial_t \delta \rho + \nabla \cdot j = 0$$

 Supplemented by constitutive relations for the charge and heat currents + Josephson relation for the superfluid velocity

$$j = \frac{\rho_s}{m} u_{\phi} - \sigma_0 \nabla \mu - \alpha_0 \nabla T$$
$$\frac{1}{T} j_Q = \alpha_0 \nabla \mu - \bar{\kappa}_0 \frac{\nabla T}{T}$$
$$\partial_t u_{\phi} = -\frac{1}{m} \nabla \mu + \frac{\xi}{m} \rho_s \nabla (\nabla \cdot u_{\phi})$$

Vortices in two dimensions

- Vortices are nucleated in pairs of vortices anti-vortices: pinned vortices do not relax the supercurrent.
- Mobile vortices will relax the supercurrent, $\partial_t u_\phi \neq 0$, by (un)winding the phase.



 As vortex cores are not superconducting, expect that mobile vortices produce dissipation and regulate the conductivity

$$\sigma = \sigma_0 + \frac{\rho_s}{m^2} \frac{1}{-i\omega + \Omega}$$

Classically [BARDEEN & STEPHEN'65]

$$\Omega \sim rac{n_f}{\sigma_n}$$

16

Pirsa: 16080051

The vortex current

Introduce the vortex density

$$n_{
m v}=rac{m}{2\pi}\epsilon^{ij}
abla^iu_\phi^j$$

• There exists a conserved vortex current (locally n_{ν} is conserved)

$$\partial_t n_v + \nabla \cdot j_v = 0$$

which is consistent with the modified Josephson relation

$$m\partial_t u_\phi = -\nabla \mu + 2\pi \epsilon^{ij} j_v^j + \xi \rho_s \nabla \nabla \cdot u_\phi$$

Interpretation: a vortex flow induces a transverse voltage [HUEBENER-SEHER'68].

Vortex constitutive relation and phase relaxation

We can now write the constitutive relation for the vortex current

$$j_{\nu} = \frac{m}{2\pi} \Omega \epsilon^{ij} u_{\phi}^{j} - \gamma \nabla^{i} n_{\nu}$$

- ullet γ is the intrinsic vortex diffusivity.
- Ω encodes the Magnus force felt by the vortices in the presence of a supercurrent [DE GENNES-MATRICON'64].

Positivity of divergence of entropy current: $\Omega > 0$, generates dissipation.

• It breaks the conservation of the phase

$$\partial_t \phi = -\mu - \Omega \phi$$

and relaxes the delta function in the electric conductivity

$$\sigma(\omega) = \sigma_0 + \frac{\rho_s}{m^2} \frac{1}{\Omega - i\omega}, \quad \sigma_{DC} = \sigma_0 + \frac{\rho_s}{m^2\Omega}$$

The vortex current

Introduce the vortex density

$$n_{
m v}=rac{m}{2\pi}\epsilon^{ij}
abla^iu_\phi^j$$

• There exists a conserved vortex current (locally n_v is conserved)

$$\partial_t n_v + \nabla \cdot j_v = 0$$

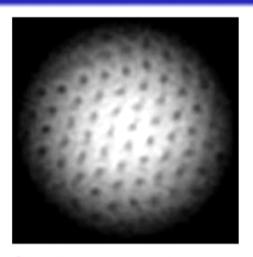
which is consistent with the modified Josephson relation

$$m\partial_t u_\phi = -\nabla \mu + 2\pi \epsilon^{ij} j_v^j + \xi \rho_s \nabla \nabla \cdot u_\phi$$

Interpretation: a vortex flow induces a transverse voltage [HUEBENER-SEHER'68].

Vortices in two dimensions

- At finite temperature, vortices can proliferate due to thermal fluctuations and destroy quasi long range order (BKT transition).
- At a vortex, the amplitude of the order parameter vanishes.



[CREDIT: ANDRE SCHIROTZEK (MIT)]

 This requires that the circulation of the superfluid velocity is quantized

$$\oint_{\text{vortex}} u_{\phi} = \frac{2\pi n}{m}$$

 At a vortex location, the superfluid velocity is no longer a pure gradient

$$u_{\phi} = \frac{1}{m} (\nabla \phi + \epsilon \times \nabla \psi)$$

Vortex constitutive relation and phase relaxation

We can now write the constitutive relation for the vortex current

$$j_{\nu} = \frac{m}{2\pi} \Omega \epsilon^{ij} u_{\phi}^{j} - \gamma \nabla^{i} n_{\nu}$$

- ullet γ is the intrinsic vortex diffusivity.
- Ω encodes the Magnus force felt by the vortices in the presence of a supercurrent [DE GENNES-MATRICON'64].

Positivity of divergence of entropy current: $\Omega > 0$, generates dissipation.

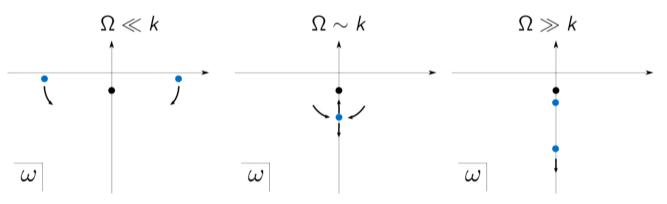
• It breaks the conservation of the phase

$$\partial_t \phi = -\mu - \Omega \phi$$

and relaxes the delta function in the electric conductivity

$$\sigma(\omega) = \sigma_0 + \frac{\rho_s}{m^2} \frac{1}{\Omega - i\omega}, \quad \sigma_{DC} = \sigma_0 + \frac{\rho_s}{m^2\Omega}$$

Relaxed spectrum



[CREDIT: LUCA V. DELACRÉTAZ (STANFORD)]

- At $\Omega \ll k$, the spectrum is qualitatively unchanged: the superfluid sound modes acquire a small mass $O(\Omega)$.
- At $\Omega \sim k$, the sound modes collide on the imaginary axis.
- At $\Omega \gg k$, the spectrum qualitatively changes: the superfluid sound modes now split into a gapped mode (Drude) and a gapless diffusive mode with $D_\omega \sim \sigma_{DC} \sim 1/\Omega$ (Einstein relation).

19

Pirsa: 16080051 Page 23/38

Decay rate from the memory matrix formalism

 The memory matrix [FORSTER'75] is a powerful formalism to calculate the decay rate of a slowly relaxing operator:

$$H = H_0 + \varepsilon \Delta H \,, \qquad \varepsilon \ll 1$$
 $\partial_t J_\phi = \varepsilon i \left[\Delta H, J_\phi
ight], \qquad J_\phi = rac{1}{m} \int_{\mathcal{T}^2 \setminus \{ ext{vortex cores} \}} d^2 x
abla \phi$

- It has proven very useful for momentum relaxation
 [HARTNOLL-KOVTUN-MUELLER-SACHDEV'07, HARTNOLL-HERZOG'07,
 HARTNOLL-HOFMAN'12, LUCAS-SACHDEV'15].
- In our case, the slow operators are J, J_{ϕ} and J_{Q} .
- ullet The conductivities take the same functional form as in hydro. Importantly, we also get a formula for Ω

$$\Omega = \varepsilon^2 \rho_s \lim_{\omega \to 0} \frac{\operatorname{Im} G_{i[\Delta H, J_{\phi}]i[\Delta H, J_{\phi}]}^R}{\omega} \ll k_B T$$

Onsite Coulomb interaction

 A natural starting point is the commutation relation between the charge density and the phase, which are canonical variables

$$[\phi(x), \rho(y)] = i\delta(x - y)$$

• This relation encodes a Heisenberg uncertainty relation:

$$\Delta\phi\Delta\rho\gtrsim\hbar$$

- Coulomb interactions penalize charge density fluctuations
 [EFETOV'80, DONIACH'81... EMERY-KIVELSON'95]. Consequently phase fluctuations are enhanced.
- A simple choice is an on-site density-density interaction [Doniach'84, Sachdev-Starykh'00]

$$\Delta H = \frac{1}{2\chi_{\rho\rho}} \int d^2x \, \rho(x)^2$$

Decay rate due to onsite Coulomb interaction

• The calculation of the decay rate

$$\Omega = arepsilon^2 rac{1}{\chi_{J_{\phi}J_{\phi}}} \lim_{\omega o 0} rac{\mathrm{Im}\, G^R_{i[\Delta H,J_{\phi}]i[\Delta H,J_{\phi}]}}{\omega}$$

now involves knowledge of the density-density retarded Green's function of the normal fluid inside the vortex cores, for which we assume the form (neglecting thermoelectric effects)

$$G_{
ho
ho}^R = rac{k^2 D \chi_{
ho
ho}}{-i\omega + D k^2} \,, \qquad D = rac{\sigma_n}{\chi_{
ho
ho}}$$

We can compute the decay rate due to this interaction as

$$\Omega = \frac{\rho_s}{m^2} \frac{n_f \pi r_v^2}{2\sigma_n}$$

where r_v is the typical radius of a vortex core, n_f the vortex density and σ_n the conductivity of the normal state.

• This is exactly [BARDEEN-STEPHEN'65], in a fully quantum treatment.

Decay rate due to onsite Coulomb interaction

The calculation of the decay rate

$$\Omega = arepsilon^2 rac{1}{\chi_{J_{\phi}J_{\phi}}} \lim_{\omega o 0} rac{\mathrm{Im}\, G^R_{i[\Delta H,J_{\phi}]i[\Delta H,J_{\phi}]}}{\omega}$$

now involves knowledge of the density-density retarded Green's function of the normal fluid inside the vortex cores, for which we assume the form (neglecting thermoelectric effects)

$$G_{
ho
ho}^R = rac{k^2 D \chi_{
ho
ho}}{-i\omega + D k^2} \,, \qquad D = rac{\sigma_n}{\chi_{
ho
ho}}$$

We can compute the decay rate due to this interaction as

$$\Omega = \frac{\rho_s}{m^2} \frac{n_f \pi r_v^2}{2\sigma_n}$$

where r_v is the typical radius of a vortex core, n_f the vortex density and σ_n the conductivity of the normal state.

• This is exactly [BARDEEN-STEPHEN'65], in a fully quantum treatment.

Summary so far

- Objective: construct a theory of slowly decaying supercurrent due to quantum fluctuations. We have done this in two ways.
- First, we constructed incoherent superfluid hydrodynamics with mobile vortices, showing that the conductivity takes the form

$$\sigma(\omega) = \sigma_0 + \frac{\rho_s}{m^2} \frac{1}{\Omega - i\omega}$$

where Ω is the 'Magnus' force felt by vortices.

 Second, we recovered it using the memory matrix approach. Turning on an on-site Coulomb interaction, we computed the decay rate as

$$\Omega = \frac{\rho_s}{m^2} \frac{n_f \pi r_v^2}{2\sigma_n}$$

which shows that phase relaxation is intimately connected with dissipation in the normal cores of the vortices for this interaction.

Why parity violation is important

- Magnetic fields play a central role in the study of superconductivity.
- Meissner effect, depairing of Cooper pairs above the critical field $H_{c2}...$
- More importantly for this talk, the phase diagram of superfluid thin films displays a field-tuned superfluid-insulator phase transition, possibly with an intermediate metallic phase.
- In the incoherent limit, since terms like $F^{ij}u_j$ have been integrated out (no normal velocity), the magnetic field only appears implicitly through terms which violate parity.

24

Pirsa: 16080051 Page 29/38

In a nutshell

We now authorize terms in the constitutive relations like

$$j^{i} - \frac{\rho_{s}}{m} \left(\delta^{ij} - \rho_{v} \epsilon^{ij} \right) u_{\phi}^{j} = -\hat{\alpha}_{1}^{ij} \nabla^{j} s - \hat{\alpha}_{2}^{ij} \nabla^{j} \rho + \cdots ,$$
$$\frac{1}{T} j^{Q i} + \frac{\rho_{s}}{m} s_{v} \epsilon^{ij} u_{\phi}^{j} = -\hat{\beta}_{1}^{ij} \nabla^{j} s - \hat{\beta}_{2}^{ij} \nabla^{j} \rho + \cdots$$

with

$$\hat{\alpha}_{\mathsf{a}}^{ij} = \alpha_{\mathsf{a}}\delta^{ij} + \alpha_{\mathsf{a}}^{H}\epsilon^{ij}, \qquad \hat{\beta}_{\mathsf{a}}^{ij} = \beta_{\mathsf{a}}\delta^{ij} + \beta_{\mathsf{a}}^{H}\epsilon^{ij},$$

where the $\hat{\alpha}$ and $\hat{\beta}$ are related to the incoherent conductivities.

More importantly, there are new contributions to the vortex current

$$j_{\nu}^{i} - \frac{m}{2\pi} \Omega \epsilon^{ij} u_{\phi}^{j} - \frac{m}{2\pi} \Omega^{H} u_{\phi}^{i} = -\frac{s_{\nu}}{2\pi} \nabla^{i} T - \frac{\rho_{\nu}}{2\pi} \nabla^{i} \mu - \gamma \nabla^{i} n_{\nu} + \cdots$$

There is a new force term Ω_H .

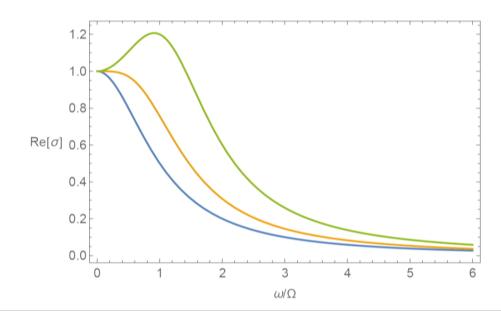
• The equations of motion and Josephson relation are unchanged.

Supercyclotron pole and optical conductivity

 Computing the conductivities as before reveals the appearance of a 'supercyclotron' pole in the retarded Green's functions. For instance,

$$\sigma(\omega) = rac{
ho_s \left(1 +
ho_v^2
ight)}{m^2} rac{-i\omega + \Omega}{\left(-i\omega + \Omega
ight)^2 + \left(\Omega^H
ight)^2} + \sigma_0$$

• The peak only moves off the vertical axis once $\Omega_H > \Omega/\sqrt{3}$ (large enough parity violation).



In a nutshell

We now authorize terms in the constitutive relations like

$$j^{i} - \frac{\rho_{s}}{m} \left(\delta^{ij} - \rho_{v} \epsilon^{ij} \right) u_{\phi}^{j} = -\hat{\alpha}_{1}^{ij} \nabla^{j} s - \hat{\alpha}_{2}^{ij} \nabla^{j} \rho + \cdots ,$$
$$\frac{1}{T} j^{Q i} + \frac{\rho_{s}}{m} s_{v} \epsilon^{ij} u_{\phi}^{j} = -\hat{\beta}_{1}^{ij} \nabla^{j} s - \hat{\beta}_{2}^{ij} \nabla^{j} \rho + \cdots$$

with

$$\hat{\alpha}_{\mathsf{a}}^{ij} = \alpha_{\mathsf{a}}\delta^{ij} + \alpha_{\mathsf{a}}^{H}\epsilon^{ij}, \qquad \hat{\beta}_{\mathsf{a}}^{ij} = \beta_{\mathsf{a}}\delta^{ij} + \beta_{\mathsf{a}}^{H}\epsilon^{ij},$$

where the $\hat{\alpha}$ and $\hat{\beta}$ are related to the incoherent conductivities.

More importantly, there are new contributions to the vortex current

$$j_{\nu}^{i} - \frac{m}{2\pi} \Omega \epsilon^{ij} u_{\phi}^{j} - \frac{m}{2\pi} \Omega^{H} u_{\phi}^{i} = -\frac{s_{\nu}}{2\pi} \nabla^{i} T - \frac{\rho_{\nu}}{2\pi} \nabla^{i} \mu - \gamma \nabla^{i} n_{\nu} + \cdots$$

There is a new force term Ω_H .

• The equations of motion and Josephson relation are unchanged.

Nernst coefficient et Lorentz ratios

 The Nernst signal (transverse electric field generated by a temperature gradient in the presence of a magnetic field) is related to vortex physics, as expected from previous work

[Huebener-Seher'70]

$$e_{\mathcal{N}} \equiv -\left(\hat{
ho}\hat{lpha}_{-}
ight)_{\mathsf{yx}} = rac{\mathsf{s}_{\mathsf{v}}}{1+
ho_{\mathsf{v}}^{2}}$$

• For small Ω and Ω_H , we can also calculate

$$L \equiv \frac{\kappa}{\sigma T} \ll 1$$
, $L^H \equiv \frac{\kappa^H}{\sigma^H T} \ll 1$

where κ is the heat conductivity with open circuit boundary conditions. This is reminiscent of the Wiedemann-Franz law in strongly-coupled theories with weak momentum relaxation

[MAHAJAN-BARKESHLI-HARTNOLL'13].

Memory matrix and parity violation

- Here as well we can recover these results from the memory matrix.
- Hence we can also compute both Ω and Ω_H by turning on the appropriate parity-violating Hamiltonian deformation.

$$\Omega =
ho_s M_{J_\phi^{\mathsf{x}} J_\phi^{\mathsf{y}}} \,, \qquad \Omega_H = -
ho_s \left(M_{J_\phi^{\mathsf{x}} J_\phi^{\mathsf{y}}} + \mathsf{N}_{J_\phi^{\mathsf{x}} J_\phi^{\mathsf{y}}}
ight) \,, \quad \mathsf{N}_{J_\phi^{\mathsf{x}} J_\phi^{\mathsf{y}}} = \chi_{J_\phi^{\mathsf{x}} J_\phi^{\mathsf{y}}}$$

For the flux-flow resistance

$$\Omega_H = \frac{\rho_s n_f \pi r_v^2}{\chi_{\rho\rho} m} \chi_{\rho\nabla \times j_\phi}$$

Chern-Simons deformation

 A rather universal possibility is turning on a Chern-Simons term for an emergent gauge field, which leads to

$$\Delta H = rac{\lambda'}{2} \int rac{d^2k}{(2\pi)^2} rac{
ho_{-k} \left(
abla imes j
ight)_k^z}{k^2} + ext{h.c.} \, .$$

and

$$i[\Delta H, J_{\phi}^{i}] = -\frac{\lambda'}{m} \lim_{k \to 0} \epsilon^{ij} j^{Tj}.$$

• This leads to decay rates Ω , Ω_H set by the conductivity of the normal component σ_0 , σ_0^H – no BKT input needed:

$$\Omega = rac{\lambda'^2
ho_s}{m^2}\sigma_0 + O(\lambda'^3)\,, \qquad \Omega_H = rac{\lambda'^2
ho_s}{m^2}(1-\sigma_0^H) + O(\lambda'^2)$$

 Ω is parametrically suppressed compared to Ω_H .

Chern-Simons deformation

 A rather universal possibility is turning on a Chern-Simons term for an emergent gauge field, which leads to

$$\Delta H = rac{\lambda'}{2} \int rac{d^2k}{(2\pi)^2} rac{
ho_{-k} \left(
abla imes j
ight)_k^z}{k^2} + ext{h.c.} \, .$$

and

$$i[\Delta H, J_{\phi}^{i}] = -\frac{\lambda'}{m} \lim_{k \to 0} \epsilon^{ij} j^{Tj}.$$

• This leads to decay rates Ω , Ω_H set by the conductivity of the normal component σ_0 , σ_0^H – no BKT input needed:

$$\Omega = rac{\lambda'^2
ho_s}{m^2}\sigma_0 + O(\lambda'^3)\,, \qquad \Omega_H = rac{\lambda'^2
ho_s}{m^2}(1-\sigma_0^H) + O(\lambda'^2)$$

 Ω is parametrically suppressed compared to Ω_H .

Summary and Outlook

- We have seen how to construct a theory a weak quantum phase fluctuations, both when parity is violated or not.
- These phase fluctuations give rise to sharp peaks in the optical conductivities.
- With parity, vortices play a prominent role in relaxing the phase, and we recover previous results but in a fully quantum treatment.
- When parity is violated, a supercyclotron pole appears.

30

Pirsa: 16080051 Page 37/38

Summary and Outlook

- While most of the discussion has been phrased in terms of hydrodynamics for physical transparency, the memory matrix formalism is a more systematic tool to capture the effects of long-lived operators, as it does not need extra assumptions.
- We have given two examples of Hamiltonian deformations, but others surely exist and our framework would still apply.
- What can we say about T=0 metallic phases? This depends on whether the parameters $(n_f, \sigma_0, \sigma_0^H)$ which control the dissipation survive at T=0.
- Experiments: some version of particle-hole symmetry ($\chi_{JP} = \rho = 0$) seems to be at play $\Omega_H \ll \Omega$. How do we understand this in our formalism ($\chi_{JJ_{\phi}} \neq 0$)?

31

Pirsa: 16080051 Page 38/38