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Abstract: A hydrodynamic theory of transport in quantum mechanically phase-disordered superconductors is possible when supercurrent relaxation
can be treated as a ow process. We obtain genera results for the frequency-dependent conductivity of such a regime. With time-reversal
invariance, the conductivity is characterized by a Drude-like peak, with width given by the supercurrent relaxation rate. Using the memory matrix
formalism, we obtain a formula for this width (and hence also the dc resistivity) when the supercurrent is relaxed by short range Coulomb
interactions. This leads to a new -- effective field theoretic and fully quantum -- derivation of a classic result on flux flow resistance. With strong
breaking of time-reversa invariance, the optical conductivity exhibits what we call a “hydrodynamic supercyclotron' resonance. We obtain the
frequency and decay rate of this resonance for the case of supercurrent relaxation due to an emergent Chern-Simons gauge field. The supercurrent
decay rate in this “topologically ordered superfluid vortex liquid' is determined by the conductivities of the norma component of the liquid. Our
work gives a controlled framework for low temperature metallic phases arising from phase-disordered superconductivity.

Pirsa: 16080051 Page 1/38



Hydrodynamic theory of

quantum fluctuating superconductivity

Blaise Goutéraux

Stanford U. and APC, CNRS Paris

Friday Aug 26, 2016

Low energy challenges for high energy physicists
Perimeter Institute, Waterloo, Canada

Pirsa: 16080051 Page 2/38



Acknowledgments

@ Based on
‘Hydrodynamics theory of quantum fluctuating superconductivity’,
arXiv:1602.08171, Phys. Rev. B 94, 054502 (2016)

together with Richard Davison, Luca Delacrétaz and Sean Hartnoll

@ My research is supported by a Marie Curie International Outgoing
Fellowship, Seventh European Community Framework Programme.

European
Commission
—

Pirsa: 16080051 Page 3/38



Infinite vs finite DC conductivities

@ If a conserved quantity (momentum) overlaps with the electric
current, the electric conductivity at zero frequency diverges. For
instance, in relativistic hydrodynamics:
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The divergence is due to momentum conservation.

0@ is the conductivity of the diffusive dofs of the system (no overlap
with momentum) [(Davison, B.G. & HArTNOLL’15].

@ |f momentum is slowly relaxed [ < T

p°

(e +p)(I—iw)

A lot of work recently in gauge/gravity duality
and hydrodynamics to model this [HarTnoLL ET

AL’07, Davison & B.G’15, Lucas’15].
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Superfluidity

@ In a superfluid, a U(1) symmetry is spontaneously broken: a
complex order parameter condenses.

@ |ts phase is a Goldstone boson and by gauge invariance
b= —p

Taking a spatial derivative

1 1
Uy = ——Vu, Uy = —Vo
m m

A phase gradient sources an electric field! The (conserved)
superfluid current couples to the electric current,

@ The electric conductivity contains a superfluid delta function
IPs

m2w

@ Is there a sense in which this delta function can be resolved?
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Superfluid /insulator transitions in thin superfluid films

2D superfluid films exhibit two different kinds of
: ISR TR l (quantum) superfluid/insulator phase transition,
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[HAVILAND ET AL’89] [HEBARD & PAALANEN’90]
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Phase diagram of SIT — early days
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[MPA F1isHER’90] [STEINER-BREZNAY-KAPITULNIK’08]
A quantum critical point sits at the SIT. At this quantum critical point,

the resistivity takes a universal value Rg = h/4e? and a scaling theory of
transport applies [MPA Fisuer’90].
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A surprise: intermediate metallic phases
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For weakly disordered films, the quantum critical resistivity differs from
Rg and scaling does not apply at low temperatures.

The resistivity becomes temperature independent over a range of fields:
intermediate metallic phase between superfluid and insulator.
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AC measurements: peaks in the conductivity

Sharp Drude-like peaks appear in the real part of the conductivity.
The superfluid 1/w pole in the imaginary part is resolved.
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Superfluid phase fluctuations are also important in the phase diagram of
the underdoped cuprates (here LSCO).

120+ 7 = Diamagnetism Onset
L, etal [10)
2 conductivity onset
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[BILBRO ET AL, NATURE PHYSICS 7, 2011]
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Plan of the talk

© Construct a theory of superfluid hydrodynamics which includes weak
phase relaxation.

© Match it to a memory matrix treatment (exact, no approximation)
and use this to calculate the width of the peak and the DC
conductivity when the phase fluctuations are weak.

© First restrict to parity invariant setups (no magnetic field), then
move on to parity-violating systems.
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Incoherent superfluid hydrodynamics

@ Hydrodynamics is the universal long wavelength, small frequencies
description of the dynamics.
dofs: conserved quantities and broken symmetry Goldstone modes.

@ Work in the incoherent limit [HarTnonn’14]: due to fast momentum
relaxation by disorder, momentum is short lived and not part of the
hydro.

We do include the Goldstone mode of the spontaneously broken
U(1) symmetry (eg phase of the complex scalar order parameter).
By gauge invariance, it couples to the chemical potential as

O = —

This Josephson equation gets corrected at higher order in
derivatives.
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Incoherent superfluid hydrodynamics

@ Our set of hydrodynamic variables are the energy and charge density
as well as superfluid velocity (d¢, dp, uy, = Vo/m).

@ The equations of motion are the conservation of energy and charge

doe +V - jg =0, Deop+V-j=0

@ Supplemented by constitutive relations for the charge and heat
currents + Josephson relation for the superfluid velocity

)
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Incoherent superfluid conductivities

@ The conductivities are (by Kadanoff and Martin)

Ips

5 = = qp,
m=w

g = 0p +

No phase relaxation yet, so infinite DC electric conductivity:
superfluidity.

@ The collective excitations are a
thermal diffusion mode and two
superfluid second sound modes.

]

[CREDIT: LucA V. DELACRETAZ

(STANFORD) |
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Vortices in two dimensions

@ At finite temperature, vortices can
proliferate due to thermal fluctuations

and destroy quasi long range order
(BKT transition).

@ At a vortex, the amplitude of the order
parameter vanishes.

[CREDIT: ANDRE SCHIROTZEK (MIT)]

@ This requires that the circulation of the superfluid velocity is

quantized
-%imrl(-x

@ At a vortex location, the superfluid velocity is no longer a pure
gradient

Uy = (v(f) + € X v{a!)

1
m
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Vortices in two dimensions

@ Vortices are nucleated in pairs of vortices
anti-vortices: pinned vortices do not relax the
supercurrent.

@ Mobile vortices will relax the supercurrent,
deuy # 0, by (un)winding the phase.

@ As vortex cores are not superconducting, expect that mobile vortices
produce dissipation and regulate the conductivity
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The vortex current

@ Introduce the vortex density

nv — _(UVFU{;J
27 ’

@ There exists a conserved vortex current (locally n, is conserved)
oeny +V -4, =0
which is consistent with the modified Josephson relation
moyuy = —V + 2wl jl 4+ EpsVV - uy

Interpretation: a vortex flow induces a transverse voltage

[HUEBENER-SEHER’68] .

Page 18/38



Vortex constitutive relation and phase relaxation

@ We can now write the constitutive relation for the vortex current

Jv=7—=0e"ul, —4V'n,

T

@ v is the intrinsic vortex diffusivity.

@ (2 encodes the Magnus force felt by the vortices in the presence of a
supercurrent [pE GENNES-MATRICON’64].

Positivity of divergence of entropy current: 2 > 0, generates
dissipation.

@ It breaks the conservation of the phase
O = — 1 — Qb

and relaxes the delta function in the electric conductivity

1 + s
a —i
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Vortex constitutive relation and phase relaxation
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Relaxed spectrum

w|

[CREDIT: Luca V. DELACRETAZ (STANFORD) ]

At 2 < k, the spectrum is qualitatively unchanged: the superfluid
sound modes acquire a small mass O(£2).

At €2 ~ k, the sound modes collide on the imaginary axis.

At Q2 > k, the spectrum qualitatively changes: the superfluid sound
modes now split into a gapped mode (Drude) and a gapless
diffusive mode with D,, ~ opc ~ 1/2 (Einstein relation).
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Decay rate from the memory matrix formalism

@ The memory matrix [ForsTer’75] is a powerful formalism to
calculate the decay rate of a slowly relaxing operator:

H = Hy +cAH, el

.
O¢dy =i [AH., Jy) . Jy = — d*xV ¢

M J T2\ {vortex cores}

@ |t has proven very useful for momentum relaxation
[HARTNOLL-KOVTUN-MUELLER-SACHDEV’07, HARTNOLL-HERZOG’Q7,

HARTNOLL-HOFMAN’12, LUCAS-SACHDEV’15].
@ |n our case, the slow operators are J, J;, and Jg.

@ The conductivities take the same functional form as in hydro.
Importantly, we also get a formula for 2

R
[ Gf[AH.J,;,]:‘[AH.Jr,,]

Q = %ps lim

w=—0 w

< kg T
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Onsite Coulomb interaction

@ A natural starting point is the commutation relation between the
charge density and the phase, which are canonical variables

[0(x). p(¥)] = id(x — y)
This relation encodes a Heisenberg uncertainty relation:

ApAp 2 h

Coulomb interactions penalize charge density fluctuations
[EFETOV’80, DONIACH’81... EMERY-KIVELSON’95]. Consequenﬂy phase
fluctuations are enhanced.

A simple choice is an on-site density-density interaction [Doniacu’84,

SACHDEV-STARYKH Q0]

1
2\;1(} .

d*x p(x)?

AH
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Decay rate due to onsite Coulomb interaction

@ The calculation of the decay rate

R
O_ 2 1 SGNYIRLIN'N

\J..»J,:- w—0 W

now involves knowledge of the density-density retarded Green's
function of the normal fluid inside the vortex cores, for which
we assume the form (neglecting thermoelectric effects)

2
Gf‘)) = k D\“P N D —
Pl —iw + Dk2 X pp

Tn

@ We can compute the decay rate due to this interaction as

nemre

Q=15
m< 20,

where r, is the typical radius of a vortex core, ns the vortex density
and o, the conductivity of the normal state.

@ This is exactly [Barpeen-stepnen’65], in a fully quantum treatment.
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@ Objective: construct a theory of slowly decaying supercurrent due to
quantum fluctuations. We have done this in two ways.

First, we constructed incoherent superfluid hydrodynamics with
mobile vortices, showing that the conductivity takes the form

where €2 is the ‘Magnus’ force felt by vortices.

Second, we recovered it using the memory matrix approach. Turning
on an on-site Coulomb interaction, we computed the decay rate as

2
s nfﬂ'fv

) =

m? 20,

which shows that phase relaxation is intimately connected with
dissipation in the normal cores of the vortices for this interaction.
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Why parity violation is important

Magnetic fields play a central role in the study of superconductivity.

Meissner effect, depairing of Cooper pairs above the critical field
He...

More importantly for this talk, the phase diagram of superfluid thin
films displays a field-tuned superfluid-insulator phase transition,
possibly with an intermediate metallic phase.

In the incoherent limit, since terms like F‘juj have been integrated
out (no normal velocity), the magnetic field only appears implicitly
through terms which violate parity.
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@ We now authorize terms in the constitutive relations like

j' - /ES (67 = pye?) u{j = —(\J'VJS — (\jVJ/J+ e

()

_}_JQ! m UJ — —,-‘;’fvjs - ,x""}gvjl’ oo

with

&Y = 0" + r\:{r’-’ : B = 3,0Y + ,-"'ff(” :

d

where the & and 3’ are related to the incoherent conductivities.

@ More importantly, there are new contributions to the vortex current

Jo = ;Qf”tﬁ, - 2—TQ” | = —Q—Tv y ”"V w—~Vin, +

There is a new force term S24.

@ The equations of motion and Josephson relation are unchanged.
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Supercyclotron pole and optical conductivity

@ Computing the conductivities as before reveals the appearance of a

‘'supercyclotron’ pole in the retarded Green's functions. For instance,

1+ p2) —iw + Q
m*  (—jw+Q)° + (QH)

o) = 224

@ The peak only moves off the vertical axis once Qy > Q/v/3 (large
enough parity violation).
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Nernst coefficient et Lorentz ratios

@ The Nernst signal (transverse electric field generated by a
temperature gradient in the presence of a magnetic field) is related
to vortex physics, as expected from previous work

[HUEBENER-SEHER’70]

@ For small Q and Q4, we can also calculate

Iy K H

L= — <1, LH = < 1
ol oHT
where r is the heat conductivity with open circuit boundary
conditions. This is reminiscent of the Wiedemann-Franz law in
strongly-coupled theories with weak momentum relaxation

[MAHAJAN-BARKESHLI-HARTNOLL’13].
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Memory matrix and parity violation

@ Here as well we can recover these results from the memory matrix.

@ Hence we can also compute both Q and €2y by turning on the
appropriate parity-violating Hamiltonian deformation.

Q=psMyp,  Qn=—ps (MJ;JJ".T, + NJ;,J;) v Ny =xpp

@ For the flux-flow resistance

2
_ PshfeTr,

\p{)m

Qp X oV X
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Chern-Simons deformation

@ A rather universal possibility is turning on a Chern-Simons term for
an emergent gauge field, which leads to

N [ Pk (VX))
2 ) (27)? k?

AH +h.c..

. pY -
i[AH, J] = —— iimo(”j”.
' m k—

@ This leads to decay rates 2, 24 set by the conductivity of the
normal component aq, o4’ = no BKT input needed:

/\,2/)5
m2

Qy = (1—ad) + O(\?)

(2 is parametrically suppressed compared to Q4.
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Summary and Outlook

We have seen how to construct a theory a weak quantum phase
fluctuations, both when parity is violated or not.

These phase fluctuations give rise to sharp peaks in the optical
conductivities.

With parity, vortices play a prominent role in relaxing the phase, and
we recover previous results but in a fully quantum treatment.

When parity is violated, a supercyclotron pole appears.
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Summary and Outlook

While most of the discussion has been phrased in terms of
hydrodynamics for physical transparency, the memory matrix
formalism is a more systematic tool to capture the effects of
long-lived operators, as it does not need extra assumptions.

We have given two examples of Hamiltonian deformations, but
others surely exist and our framework would still apply.

What can we say about T = 0 metallic phases? This depends on
whether the parameters (nf, o, o) which control the dissipation
survive at T = 0.

Experiments: some version of particle-hole symmetry (xp = p = 0)
seems to be at play 2y < 2. How do we understand this in our
formalism (s, # 0)7
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