Title: TBA

Date: Aug 24, 2016 09:30 AM

URL: http://pirsa.org/16080043

Abstract:

Pirsa: 16080043

Evidence for hydrodynamic electron flow in PdCoO₂

Andy Mackenzie

Max Planck Institute for Chemical Physics of Solids, Dresden, Germany

School of Physics & Astronomy, University of St Andrews, Scotland

Pirsa: 16080043 Page 2/33

Contents

- 1. Hydrodynamic flow in classical fluids and ³He
- 2. Challenge of electron hydrodynamics
- 3. Unusual metal physics of delafossites
- 4. Evidence for a viscous contribution to transport in PdCoO₂
- 5. Summary and future prospects

Pirsa: 16080043 Page 3/33

Pirsa: 16080043

What about a quantum fluid? Consider ³He

This is non-intuitive at first sight – the 'better' the fluid (lower scattering) the more viscous it becomes!

It is a very real effect though – it dictates the low temperature limit of dilution fridge operation.

Pirsa: 16080043 Page 5/33

Fluid flow through an empty 2D channel

- Mean free path ℓ_{MC} is for scattering of the fluid particles from each other. These events conserve the overall fluid momentum.
- Only momentum-relaxing collisions are with the outside world, i.e. at the walls of the channel.
- For longer ℓ_{MC} the particles find the walls more efficiently so the rate of momentum relaxation goes up.
- The same applies to all transverse coupling so η is proportional to ℓ_{MC} . A 'pure' particle fluid with a low internal scattering rate is a viscous one!
- Most appropriate theory is based on hydrodynamics, e.g. on the Navier-Stokes equations

Pirsa: 16080043 Page 6/33

Electrons flowing in a normal solid are *far* from the hydrodynamic regime

- Unlike the fluid in the empty tube, electrons in solids have many ways of making collisions in the bulk that relax the momentum to the solid.
- Electron-impurity, normal electron-phonon, Umklapp electron-phonon and Umklapp electron-electron processes all relax momentum.
- One is usually FAR from the hydrodynamic in which internal collisions are frequent and momentum-conserving.
- How to proceed? In 99.9999% of cases we have ignored momentum-conserving processes completely. We parameterise flow resistance in terms of resistivity, which is a property of the solid, not of the electron fluid.

Pirsa: 16080043 Page 7/33

The 0.00001%

MINIMUM OF RESISTANCE IN IMPURITY-FREE CONDUCTORS

R. N. GURZHI

J.Exptl. Theoret. Phys. (U.S.S.R.) 44, 771-772 (February, 1963)

HYDRODYNAMIC EFFECTS
IN SOLIDS AT LOW TEMPERATURE

R. N. GURZHI

Usp. Fiz. Nauk 94, 689-718 (April, 1968)

Key point introduced by Gurzhi: In solids, hydrodynamic effects can be parameterised in terms of the relationship between the three length scales ℓ_{MR} , ℓ_{MC} and sample dimension (here W).

$$\ell_{\mathsf{MR}} << \ell_{\mathsf{MC}} << W$$

Standard theory applies; R is determined entirely by solid resistivity ρ and usual geometrical factors

$$\ell_{\rm MC} << W << \ell_{\rm MR}$$

Hydrodynamic theory applies; R is determined entirely by fluid viscosity η , boundary scattering and 'Navier-Stokes' geometrical factors

Can hydrodynamic effects be observed in a true metal?

Recall hydrodynamic condition: $\ell_{MC} \ll W \ll \ell_{MR}$

Looks extremely difficult: Must often work far below $T_{\rm F}$ so $\ell_{\rm ee}$ is very long, and e-e Umklapp is in principle efficient. Expectation is that $\ell_{\rm MC} >> \ell_{\rm MR}$.

However, delafossites seem not to be standard metals.

Pirsa: 16080043 Page 9/33

Fermi surface of PdCoO₂ from calculation and ARPES

K.P. Ong, J. Zhang, J.S. Tse and P. Wu Phys. Rev. B **81**, 115120 (2010)

H.J. Noh, J. Jeong, E.J. Cho, S.B. Kim, K. Kim, B.I. Min and H.D. Kim, Phys. Rev. Lett. **102**, 256404 (2009)

Pirsa: 16080043 Page 10/33

P. Kushwaha, V. Sunko, P. J. W. Moll, L. Bawden, J. M. Riley, N. Nandi, H. Rosner, F. Arnold, E. Hassinger, T. K. Kim, M. Hoesch, A. P. Mackenzie and P. D. C. King, Science Advances 1, 1500692 (2015).

Pirsa: 16080043 Page 11/33

P. Kushwaha, V. Sunko, P. J. W. Moll, L. Bawden, J. M. Riley, N. Nandi, H. Rosner, F. Arnold, E. Hassinger, T. K. Kim, M. Hoesch, A. P. Mackenzie and P. D. C. King, Science Advances 1, 1500692 (2015).

Pirsa: 16080043 Page 12/33

ARPES is consistent with the de Haas – van Alphen effect in both PdCoO₂ and PtCoO₂

Data for PdCoO₂

$$\overline{k}_{\rm F} = 0.97 \, {\rm \AA}^{-1}$$

$$\bar{m}^* = 1.5 \ m_e$$

$$\overline{v}_{\rm F}$$
 = 7.5 x 10⁵ ms⁻¹

$$T_{\rm F}$$
 = 27000 K

Single closed Fermi surface; no observed density wave gapping.

Conduction bands of Pd / PtCoO₂ have dominantly 4d / 5d character but nearly free electron parameters.

C.W. Hicks, A.S. Gibbs, A.P. Mackenzie, H. Takatsu, Y. Maeno & E.A. Yelland Phys. Rev. Lett. 109, 116401 (2012)

Pirsa: 16080043 Page 13/33

Pirsa: 16080043 Page 14/33

Pirsa: 16080043 Page 15/33

Pirsa: 16080043 Page 16/33

Tiny and exponential resistivity at low temperatures

Resistivity at low T is $< 10 \text{ n}\Omega\text{cm}$.

Mean free path ℓ can be as much as 50 μ m!

If this is naively interpreted as a defect spacing it is chemically implausible.

Also, $\ell_{\rm dHvA}$ << $\ell_{\rm MR}$

C.W. Hicks, A.S. Gibbs, A.P. Mackenzie, H. Takatsu, Y. Maeno & E.A. Yelland Phys. Rev. Lett. 109, 116401 (2012)

Pirsa: 16080043 Page 17/33

Could exponential resistivity be due to 'phonon drag'?

Idea (Peierls 1930s): phonons cannot equilibriate on the timescale of low temperature electron-phonon collisions and are dragged out of equilibrium by the electron distribution in an applied electric field at low temperatures.

Standard el-ph scattering therefore does not relax the electron distribution's momentum at low temperatures.

Electron-phonon Umklapp processes then have an activation temperature $T_{\cup} = \hbar c k_{\cup}$ where c is the sound velocity.

Estimating c from phonon specific heat and knowing $k_{\rm U}$ from the Fermi surface gives reasonable agreement between $T_{\rm U}$ and the measured $T_{\rm o}$.

Pirsa: 16080043 Page 18/33

Pirsa: 16080043 Page 19/33

Note on effective dimensionality

Regime can be reached in which the sample is just a large number ($^{\sim}$ 10 4) parallel conducting layers. Analysis using 2D transport theory is then appropriate.

Pirsa: 16080043 Page 20/33

Carefully study the electron flow when boundary scattering at the edges of the channel becomes important

Experiment: Successively narrow the channel in factors of 2, measuring the resistance after every step.

P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt and A.P. Mackenzie, Science **351**, 1061 (2016)

Pirsa: 16080043 Page 21/33

Pirsa: 16080043 Page 22/33

The de Jong – Molenkamp theory

Rewrite standard Boltzmann theory explicitly including momentum-conserving scattering.

Convenient and (eventually!) intuitive parameterisation in terms of the three length scales introduced by Gurzhi.

Predictive capability in principle for any combination of $\ell_{\rm MR}$, $\ell_{\rm MC}$ and W.

M.J.M de Jong & L.W. Molenkamp, Phys. Rev. B **51**, 13389 (1995)

Pirsa: 16080043 Page 23/33

Purely ballistic theory of transport in 2D channels

C.W.J. Beenakker and H. van Houten, Solid State Phys. 44, 1 (1991)

Expressed as a function of these dimensionless axes there are no free parameters

Pirsa: 16080043 Page 24/33

Add momentum-conserving scattering with de Jong-Molenkamp theory

In the very narrow wires the shorter $\ell_{\rm MC}$ enhances the coupling to the boundary. Crossover close to $\ell_{\rm MC}$ / W = 1; intuitively reasonable.

Diffusive momentum conserving scattering hinders ballistic coupling with the boundary and gives characteristic W^{-2} dependence for channel resistivity of a viscous system (equivalent to the W^{-3} dependence of channel resistance obtained by solving the Navier-Stokes equation in 2D).

Pirsa: 16080043 Page 25/33

Pirsa: 16080043 Page 26/33

Width dependence of channel resistance analysed using the de Jong-Molenkamp theory

Curvature is the signature of a viscous contribution

Pirsa: 16080043 Page 27/33

Temperature dependence of the effect

A temperature dependence is observed, which would not be expected in the absence of significant hydrodynamic effects.

However, the data imply a much weaker change of ℓ_{MC} than might be expected.

Pirsa: 16080043 Page 28/33

Viscosity of some familiar classical and quantum fluids

Pirsa: 16080043 Page 29/33

Temperature dependence of the effect

A temperature dependence is observed, which would not be expected in the absence of significant hydrodynamic effects.

However, the data imply a much weaker change of ℓ_{MC} than might be expected.

Pirsa: 16080043 Page 30/33

Electrons in graphene I: D. A. Bandurin et al., Science 351, 1055 (2016)

Electrons in graphene II: J. Crossno et al., Science 351, 1058 (2016)

Pirsa: 16080043 Page 31/33

Outstanding question – are hydrodynamics playing a role in transport in quantum critical electron systems?

S. Kasahara et al., Phys. Rev. B **81**, 184519 (2010)

Cuprates, pnictides, heavy fermions, organics and even some conventional metals can be tuned to show linear resistivity.

Evidence for a universal, high scattering rate when this happens.

J.A.N. Bruin, H. Sakai, R.S. Perry & A.P. Mackenzie, Science 339, 804 (2013)

Is hydrodynamics playing a role in this? Unknown but, in principle, testable.

Also possible to extend in future to fully three-dimensional systems.

Pirsa: 16080043 Page 32/33

Conclusions

- Observation of hydrodynamic electron flow requires such high purity that it has only very recently been observed in naturally occurring materials.
- 2. The modern experiments were stimulated by modern theory, but past achievements had been somewhat overlooked.
- 3. Hydrodynamic contributions to electron transport may be discovered in other systems; further experiments are definitely desirable.

Pirsa: 16080043 Page 33/33