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Viscosity of some familiar classical substances
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What about a quantum fluid? Consider 3He
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This is non-intuitive at first sight —the ‘better’ the fluid (lower scattering) the
more viscous it becomes!

It is a very real effect though — it dictates the low temperature limit of dilution
fridge operation.
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Fluid flow through an empty 2D channel
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* Mean free path (), is for scattering of the fluid particles from each other.
These events conserve the overall fluid momentum.

* Only momentum-relaxing collisions are with the outside world, i.e. at the
walls of the channel.

* Forlonger / the particles find the walls more efficiently so the rate of
momentum relaxation goes up.

* The same applies to all transverse coupling so n is proportional to {y,c. A
‘pure’ particle fluid with a low internal scattering rate is a viscous one!

* Most appropriate theory is based on hydrodynamics, e.g. on the Navier-
Stokes equations
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Electrons flowing in a normal solid are far from the
hydrodynamic regime

Unlike the fluid in the empty tube, electrons in solids have many ways of
making collisions in the bulk that relax the momentum to the solid.

Electron-impurity, normal electron-phonon, Umklapp electron-phonon and
Umklapp electron-electron processes all relax momentum.

One is usually FAR from the hydrodynamic in which internal collisions are
frequent and momentum-conserving.

How to proceed? In 99.9999% of cases we have ignored momentum-
conserving processes completely. We parameterise flow resistance in terms
of resistivity, which is a property of the solid, not of the electron fluid.

Page 7/33



The 0.00001%

MINIMUM OF RESISTANCE IN IMPURITY - HYDRODYNAMIC EFFECTS
FREE CONDUCTORS IN SOLIDS AT LOW TEMPERATURE
R. N. GURZHI R. N. GURZHI

J .Exptl. Theoret. Phys. (U.S.S.R.) 44, 771-772 Usp. Fiz. Nauk 94, 689-718 (April, 1968)

(February, 1963)

Key point introduced by Gurzhi: In solids, hydrodynamic effects can be parameterised
in terms of the relationship between the three length scales /g, /jyc and sample
dimension (here W).
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Standard theory applies; Hydrodynamic theory applies; R is

R is determined entirely by solid determined entirely by fluid viscosity
resistivity p and usual geometrical n, boundary scattering and ‘Navier-
factors Stokes’ geometrical factors
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Can hydrodynamic effects be observed in a true metal?

Recall hydrodynamic condition: /¢ << W << 7

Looks extremely difficult: Must often work far below T, so 7_, is very long, and
e-e Umklapp is in principle efficient. Expectation is that 7, >> /.

However, delafossites seem

not to be standard metals. 25
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Fermi surface of PdCoO, from calculation and ARPES
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K.P. Ong, J. Zhang, J.S. Tse and P. Wu H.J. Noh, J. Jeong, E.J. Cho, S.B. Kim, K.
Phys. Rev. B81, 115120 (2010) Kim, B.l. Min and H.D. Kim, Phys. Rev.

Lett. 102, 256404 (2009)
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ARPES spectra from PtCoO,
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P. Kushwaha, V. Sunko, P. J. W. Moll, L. Bawden, J. M. Riley, N. Nandi, H. Rosner, F.
Arnold, E. Hassinger, T. K. Kim, M. Hoesch, A. P. Mackenzie and P. D. C. King, Science
Advances 1, 1500692 (2015).
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ARPES spectra from PtCoO,
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No observable boson coupling or quasiparticle peak
broadening down to 5000 K below E,

P. Kushwaha, V. Sunko, P. J. W. Moll, L. Bawden, J. M. Riley, N. Nandi, H. Rosner, F.
Arnold, E. Hassinger, T. K. Kim, M. Hoesch, A. P. Mackenzie and P. D. C. King, Science
Advances 1, 1500692 (2015).
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ARPES is consistent with the de Haas — van Alphen effect
in both PdCoO,, and PtCoO,

Data for PdCoO,
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Single closed Fermi surface; no observed density wave gapping.

Conduction bands of Pd / PtCoO, have dominantly 4d / 5d character but nearly
free electron parameters.

C.W. Hicks, A.S. Gibbs, A.P. Mackenzie, H. Takatsu, Y. Maeno & E.A. Yelland
Phys. Rev. Lett. 109, 116401 (2012)
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PdCoO, and PtCoO,: record-breaking conductivity
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PdCoO,
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Tiny and exponential resistivity at low temperatures
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C.W. Hicks, A.S. Gibbs, A.P. Mackenzie, H. Takatsu, Y. Maeno & E.A. Yelland Phys. Rev.
Lett. 109, 116401 (2012)
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Could exponential resistivity be due to ‘phonon drag’?

Idea (Peierls 1930s): phonons cannot .

equilibriate on the timescale of low kU
temperature electron-phonon collisions and ' / =
are dragged out of equilibrium by the ok

electron distribution in an applied electric
field at low temperatures.

Standard el-ph scattering therefore does
not relax the electron distribution’s
momentum at low temperatures.

Electron-phonon Umklapp processes then have an activation temperature
T, = hck, where c is the sound velocity.

Estimating ¢ from phonon specific heat and knowing k, from the Fermi
surface gives reasonable agreement between T, and the measured T,.
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Note on effective dimensionality
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Note on effective dimensionality

Regime can be reached in which the sample is just a large number (~ 10%) parallel
conducting layers. Analysis using 2D transport theory is then appropriate.
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Carefully study the electron flow when boundary scattering at
the edges of the channel becomes important

thinning cuts
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Experiment: Successively narrow the channel in factors of 2, measuring the
resistance after every step.

P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt and A.P. Mackenzie, Science
351, 1061 (2016)
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The de Jong — Molenkamp theory
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M.J.M de Jong & L.W. Molenkamp, Phys. Rev. B 51, 13389 (1995)
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Purely ballistic theory of transport in 2D channels

C.W.J. Beenakker and H. van Houten, Solid State Phys. 44, 1 (1991)
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Expressed as a function of these dimensionless axes there are no free parameters
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Add momentum-conserving scattering with de Jong-Molenkamp theory
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Width dependence of channel resistance analysed using the
de Jong-Molenkamp theory
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Curvature is the signature of a
viscous contribution
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Temperature dependence of the effect

Experiment Calculation
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A temperature dependence is observed, which would not be expected in the
absence of significant hydrodynamic effects.

However, the data imply a much weaker change of /,,.than might be expected.
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Viscosity of some familiar classical and quantum fluids
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Temperature dependence of the effect

Experiment
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A temperature dependence is observed, which would not be expected in the

absence of significant hydrodynamic effects.

However, the data imply a much weaker change of /,,. than might be expected.
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Viscosity of some familiar classical and quantum fluids
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Electrons in graphene |: D. A. Bandurin et al., Science 351, 1055 (2016)
Electrons in graphene Il: J. Crossno et al., Science 351, 1058 (2016)
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CLL cm

Outstanding question — are hydrodynamics playing a role in
transport in quantum critical electron systems?

BaFe As,,P,),

v 1

I'K)

S. Kasahara et al., Phys. Rev. B 81,
184519 (2010)

Cuprates, pnictides, heavy fermions,
organics and even some conventional
metals can be tuned to show linear
resistivity.

Evidence for a universal, high
scattering rate when this happens.
J.A.N. Bruin, H. Sakai, R.S. Perry & A.P.
Mackenzie, Science 339, 804 (2013)

Is hydrodynamics playing a role in this?
Unknown but, in principle, testable.

Also possible to extend in future to
fully three-dimensional systems.
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EXaX3
b

1.

Conclusions

Observation of hydrodynamic electron flow requires such high purity
that it has only very recently been observed in naturally occurring
materials.

The modern experiments were stimulated by modern theory, but past
achievements had been somewhat overlooked.

Hydrodynamic contributions to electron transport may be discovered
in other systems; further experiments are definitely desirable.
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