Title: Hierarchical growth of entangled states

Date: Aug 22, 2016 02:15 PM

URL: http://pirsa.org/16080037

Abstract: This talk, based on work with Brian Swingle, will describe the s-sourcery program. Its goal is to extend the lessons of the renormalization group to quantum many body states.

Pirsa: 16080037 Page 1/55

Hierarchical growth of entangled states

or

's-sourcery'

John McGreevy (UCSD)

(arXiv:1407.8203, 1505.07106, 1602.02805, 1607.05753, in progress) with

Brian Swingle (Stanford)

and

Shenglong Xu (UCSD)

PLAN:

- Gapped groundstates
- Gapless groundstates
- Mixed states

Pirsa: 16080037 Page 2/55

Understand the structure of entanglement in physical states of quantum field theories

Pirsa: 16080037 Page 3/55

Understand the structure of entanglement in physical states of quantum field theories

necessary for numerical simulation

(how much resources are required? where in Hilbert space to look?)

Pirsa: 16080037 Page 4/55

Understand the structure of entanglement in physical states of quantum field theories

necessary for numerical simulation

(how much resources are required? where in Hilbert space to look?)

useful as a diagnostic

(how to distinguish different phases with the same symmetries?)
[Fig: T. Grover]

Pirsa: 16080037 Page 5/55

Understand the structure of entanglement in physical states of quantum field theories

necessary for numerical simulation

(how much resources are required? where in Hilbert space to look?)

useful as a diagnostic

(how to distinguish different phases with the same symmetries?)
[Fig: T. Grover]

a crucial point of contact with holographic duality

(entanglement entropy \simeq area)

Pirsa: 16080037 Page 6/55

Context

$$ightharpoonup \mathcal{H} = \otimes_{\mathsf{x}} \mathcal{H}_{\mathsf{x}}$$

- ► $H = \sum_{x} H_{x}$ hamiltonian 'motif' (rules out many horrible pathologies). support of H_{x} is localized.
- families of systems labelled by (linear) system size L: H_L with groundstate(s) $\{|\psi_L\rangle\}$

Coarsely-stated, impossible desideratum: low-depth unitary **U** which constructs the groundstate *from smaller unentangled subsystems*:

$$|\psi_L\rangle \stackrel{??}{=} \mathbf{U}|0\rangle^{\otimes L}$$

Pirsa: 16080037 Page 7/55

Context

$$ightharpoonup \mathcal{H} = \otimes_{\mathsf{x}} \mathcal{H}_{\mathsf{x}}$$

- ► $H = \sum_{x} H_{x}$ hamiltonian 'motif' (rules out many horrible pathologies). support of H_{x} is localized.
- families of systems labelled by (linear) system size L: H_L with groundstate(s) $\{|\psi_L\rangle\}$

Coarsely-stated, impossible desideratum: low-depth unitary **U** which constructs the groundstate *from smaller unentangled subsystems*:

$$|\psi_L\rangle \stackrel{??}{=} \mathbf{U}|0\rangle^{\otimes L}$$

Warmup example

$$(d=1,s=0)$$
: $H(\eta)=\sum_n(1+(-1)^n\eta)\mathbf{c}_n^{\dagger}\mathbf{c}_{n+1}+hc$ adiabatically deform 1d band insulator to product state

Given:
$$H(\eta) \xrightarrow{\text{gapped}} H(1) \xrightarrow{\text{product ground state}} |\psi(\eta)\rangle \xrightarrow{\text{ground state of interest}} |\psi(1)\rangle$$

Construct: $U \stackrel{?}{=} Pe^{i \int_0^1 d\eta H(\eta)}$

There are two problems with this plan, in general

1. (Technical, solvable) Even if $H(\eta)$ all have gap $\geq \Delta > 0$, adiabatic evolution has a nonzero failure probability (per unit time, per unit volume).

Pirsa: 16080037 Page 9/55

There are two problems with this plan, in general

$$\begin{array}{c|c} H(\eta) & \xrightarrow{H(\eta) \text{ gapped}} \\ H(0) & \xrightarrow{} H(1) \\ \text{product ground state} & |\psi(\eta)\rangle & \text{ground state of interest} \\ |\psi(0)\rangle & |\psi(1)\rangle & \\ \end{array}$$

1. (Technical, solvable) Even if $H(\eta)$ all have gap $\geq \Delta > 0$, adiabatic evolution has a nonzero failure probability (per unit time, per unit volume).

Solution [Hastings, Wen]: Find quasilocal
$$\mathbf{K}$$
 such that $\mathbf{K} = -\mathbf{i} \int_{-\infty}^{\infty} dt F(t) e^{\mathbf{i} H(\eta) t} \partial_{\eta} H(\eta) e^{-\mathbf{i} H(\eta) t}$ $K = -\mathbf{i} \int_{-\infty}^{\infty} dt F(t) e^{\mathbf{i} H(\eta) t} \partial_{\eta} H(\eta) e^{-\mathbf{i} H(\eta) t}$ $K = -\mathbf{i} \int_{-\infty}^{\infty} dt F(t) e^{\mathbf{i} H(\eta) t} \partial_{\eta} H(\eta) e^{-\mathbf{i} H(\eta) t}$ $K = -\mathbf{i} \int_{-\infty}^{\infty} dt F(t) e^{\mathbf{i} H(\eta) t} \partial_{\eta} H(\eta) e^{-\mathbf{i} H(\eta) t}$ $K = \mathbf{i} \int_{-\infty}^{\infty} dt F(t) e^{\mathbf{i} H(\eta) t} \partial_{\eta} H(\eta) e^{-\mathbf{i} H(\eta) t} \partial_{\eta} H(\eta) e^{$

←□ > ←□ > ← □ > ←

Context

$$ightharpoonup \mathcal{H} = \otimes_{\mathsf{x}} \mathcal{H}_{\mathsf{x}}$$

- ► $H = \sum_{x} H_{x}$ hamiltonian 'motif' (rules out many horrible pathologies). support of H_{x} is localized.
- families of systems labelled by (linear) system size L: H_L with groundstate(s) $\{|\psi_L\rangle\}$

Coarsely-stated, impossible desideratum: low-depth unitary **U** which constructs the groundstate *from smaller unentangled subsystems*:

$$|\psi_L\rangle \stackrel{??}{=} \mathbf{U}|0\rangle^{\otimes L}$$

Warmup example

$$(d=1,s=0)$$
: $H(\eta)=\sum_n(1+(-1)^n\eta)\mathbf{c}_n^{\dagger}\mathbf{c}_{n+1}+hc$ adiabatically deform 1d band insulator to product state

Given:
$$H(\eta) \xrightarrow{\text{gapped}} H(1) \xrightarrow{\text{product ground state}} |\psi(\eta)\rangle \xrightarrow{\text{ground state of interest}} |\psi(1)\rangle$$

Construct: $U \stackrel{?}{=} Pe^{i \int_0^1 d\eta H(\eta)}$

Expanding universe strategy

[Swingle, JM, 1407.8203, PRB]

Instead, we are going to *grow* the system $|\psi_L\rangle \to |\psi_{2L}\rangle$ with local unitaries.

$$U \sim \cdots \circ U_{4L_0 \leftarrow 2L_0} \circ U_{2L_0 \leftarrow L_0}$$

U will in general not have finite depth. but U will have an RG structure.

Assumptions:

- ▶ Raw material: a bath of 'ancillas' $\otimes |0\rangle^M$ is freely available.
- ightharpoonup For rigorous results, energy gap Δ for all excitations.
- There may be groundstate degeneracy $G(H_L)$ but the groundstates are *locally indistinguishable* (a necessary condition for the state to be stable)

Pirsa: 16080037 Page 12/55

Expanding universe strategy

[Swingle, JM, 1407.8203, PRB]

Instead, we are going to *grow* the system $|\psi_L\rangle \rightarrow |\psi_{2L}\rangle$ with local unitaries.

$$U \sim \cdots \circ U_{4L_0 \leftarrow 2L_0} \circ U_{2L_0 \leftarrow L_0}$$

U will in general not have finite depth. but U will have an RG structure.

Assumptions:

- ▶ Raw material: a bath of 'ancillas' $\otimes |0\rangle^M$ is freely available.
- ightharpoonup For rigorous results, energy gap Δ for all excitations.
- ► There may be groundstate degeneracy G(H_L) but the groundstates are locally indistinguishable (a necessary condition for the state to be stable)

Pirsa: 16080037 Page 13/55

An s-source RG fixed point

(in d dimensions) is a system whose groundstate on $(2L)^d$ sites can be made from the groundstate on L^d sites (plus unentangled ancillas) using a quasilocal unitary.

$$|\psi_{2L}\rangle = \frac{U}{U} \left(\underbrace{|\psi_L\rangle \cdots |\psi_L\rangle}_{s} \otimes |0\rangle^{M}\right)$$

$$M=L^d(2^d-s)$$

[Swingle, JM, 1407.8203, PRB]

Pirsa: 16080037 Page 15/55

An s-source RG fixed point

(in d dimensions) is a system whose groundstate on $(2L)^d$ sites can be made from the groundstate on L^d sites (plus unentangled ancillas) using a quasilocal unitary.

$$|\psi_{2L}\rangle = \frac{U}{U} \left(\underbrace{|\psi_L\rangle \cdots |\psi_L\rangle}_{s} \otimes |0\rangle^{M}\right)$$

$$M=L^d(2^d-s)$$

[Swingle, JM, 1407.8203, PRB]

Pirsa: 16080037 Page 16/55

An s-source RG fixed point

(in *d* dimensions) is a system whose groundstate on $(2L)^d$ sites can be made from the groundstate on L^d sites (plus unentangled ancillas) using a quasilocal unitary.

[Swingle, JM, 1407.8203, PRB]

$$|\psi_{2L}
angle = egin{align*} oldsymbol{U} \left(\underbrace{|\psi_L
angle \cdots |\psi_L
angle}_{s} \otimes |0
angle^M
ight) \qquad \stackrel{ ext{d=2, s=1}}{ ext{ }} \qquad \qquad egin{align*} oldsymbol{U} & & & & & oldsymbol{U} \end{array}$$

$$M=L^d(2^d-s)$$

$$\stackrel{\mathsf{d=2,\,s=1}}{\bullet} \quad \stackrel{\bullet}{\bullet} \quad \stackrel{\bullet}{\longrightarrow} \quad \stackrel{\bullet}{\bullet} \quad \stackrel{\bullet}$$

Pirsa: 16080037 Page 17/55

How to construct U

Construct U by quasiadiabatic evolution : (For s=1 we must start with s=1 copy at size L.)

$$\begin{array}{c} H(\eta) & \xrightarrow{} H(1) \\ \text{ground state on size L (and product states)} & |\psi(\eta)\rangle & \text{ground state on size 2L} \\ |\psi(0)\rangle & |\psi(1)\rangle & & \text{[Hastings, Wen]} \end{array}$$

Reminder: quasilocal means:

$$U=\mathrm{e}^{\mathrm{i}K},\ \ K=\sum_{x}K_{x},\ \ K_{x}=\sum_{r}K_{x,r}\ K_{x,r}\ \mathrm{supported}$$
 on disk of radius r , $\|\ K_{x,r}\ \|\le \mathrm{e}^{-r^{1-d}}$

Pirsa: 16080037 Page 18/55

How to construct U

Construct **U** by quasiadiabatic evolution :

(For s = 1 we must start with s = 1 copy at size L.)

Given: $H(\eta) \xrightarrow{\text{gapped}} H(1) \xrightarrow{\text{ground state on size L (and product states)}} H(\eta) \xrightarrow{\text{ground state on size L (and product states)}} |\psi(\eta)\rangle \xrightarrow{\text{ground state on size 2L}} |\psi(1)\rangle \xrightarrow{\text{[Hastings, Wen]}}$

Reminder: quasilocal means:

$$U=\mathrm{e}^{\mathrm{i}K}, \quad K=\sum_x K_x, \quad K_x=\sum_r K_{x,r} \ K_{x,r} \ \mathrm{supported} \ \mathrm{on} \ \mathrm{disk} \ \mathrm{of} \ \mathrm{radius} \ r, \ \| \ K_{x,r} \ \| \ \leq \ \mathrm{e}^{-r^{1-d}}$$

Basic property: Recursive entropy bounds:

(Uses Small Incremental Entangling result of

[Kitaev, Bravyi, van Acoleyn-Marien-Verstraete 2014].)

$$S(2R) \leq sS(R) + kR^{d-1}$$

$$S(2R) \geq sS(R) - k'R^{d-1}$$

Why is *s*-source RG fixed point a useful notion?

1. Such a circuit controls the growth of entanglement with system size: Area law theorem: any $s \le 1$ fixed point in d > 1 enjoys an area law for EE of subregions.

$$S(A) \equiv -\operatorname{tr} \rho_A \log \rho_A \le k |\partial A| = kR^{d-1}.$$

 $s \ge 2^{d-1}$ is required to violate the area law.

Pirsa: 16080037 Page 20/55

Why is *s*-source RG fixed point a useful notion?

1. Such a circuit controls the growth of entanglement with system size: Area law theorem: any $s \le 1$ fixed point in d > 1 enjoys an area law for EE of subregions.

$$S(A) \equiv -\operatorname{tr} \rho_A \log \rho_A \le k |\partial A| = kR^{d-1}.$$

 $s \ge 2^{d-1}$ is required to violate the area law.

- 2. The groundstate degeneracy satisfies: $G(2L) = G(L)^s$
- 3. s (smallest possible) is a property of the phase (since by definition an adiabatic path connects any two representatives) \implies classification axis.
- 4. The circuit implies a MERA representation of the groundstate.

Pirsa: 16080037 Page 21/55

Many interesting states are s-source fixed points

ullet Mean field symmetry-breaking states (s=0)

ullet Chern insulators, IQH $\,(s=1)$

Pirsa: 16080037 Page 22/55

Many interesting states are s-source fixed points

• Mean field symmetry-breaking states (s = 0)

ullet Chern insulators, IQH $\,(s=1)\,$

- ullet Topological states (discrete gauge theory, fractional QH), including chiral ones (s=1)
- Any topological quantum liquid

 \equiv insensitive to smooth deformations of space \simeq gapped QFT has s=1.

Why: place it in an expanding universe $ds^2 = -d\eta^2 + a(\eta)^2 d\vec{x}^2$

Experimental example: QCD

- ▶ Our universe is expanding, $t_{\text{doubling}} \sim 10^{10} \text{years}$.
- ▶ The QCD gap stays open $(m_{\pi}, m_p > 0)$.
- ▶ This is a gapped path from $|\psi_L\rangle$ to $|\psi_{2L}\rangle$.
- \implies \exists a quasilocal unitary which constructs the QCD groundstate from a small cluster plus ancillas. (i.e. QCD has s=1).

This suggests a new approach to simulating its groundstate which is in principle very efficient.

Pirsa: 16080037 Page 24/55

Reason to care #3: Classification of gapped states by s

Pirsa: 16080037 Page 25/55

Pirsa: 16080037 Page 26/55

MERA representations of s = 1 fixed points

Quasilocal \bigcup Trotter low-depth circuit:

$$|\psi_L\rangle \simeq \mathsf{U}_{\mathsf{circuit}} |\psi_{L/2}\rangle |0\rangle^{L/2}$$

finite overlap requires $\hat{\ell} \sim \log^{1+\delta}(L)$

 \Longrightarrow

bond dimension $\sim e^{\hat{\ell}^d} \sim e^{c \log^{d(1+\delta)}(L)}$

Crucial point: This construction of Ucircuit requires no variational sweeps on large system.

Numerical implementation...?

[getting started with Snir Gazit]

Pirsa: 16080037

Further payoff: Invertible states

▶ A robust notion of 'short-range-entangled' Related ideas: [Kitaev, Freed] 'Invertible states,' $|\psi\rangle$ means $\exists |\psi^{-1}\rangle$, $\ensuremath{\mathbf{U}}$ s.t.

$$|\psi
angle\otimes|\psi^{-1}
angle=$$
 U $|0
angle^{\otimes 2L^d}$ has $s=0.$

Pirsa: 16080037 Page 28/55

Further payoff: Invertible states

▶ A robust notion of 'short-range-entangled' Related ideas: [Kitaev, Freed] 'Invertible states,' $|\psi\rangle$ means $\exists |\psi^{-1}\rangle$, \mathbf{U} s.t.

$$|\psi
angle\otimes|\psi^{-1}
angle= {f U}|0
angle^{\otimes 2L^d}$$
 has $s=0.$

Weak area law: a unique groundstate on any closed manifold (no topological order, but can still be interesting as SPTs) implies the existence of an inverse state and the area law.

Pirsa: 16080037 Page 29/55

Further payoff: Invertible states

A robust notion of 'short-range-entangled' Related ideas: [Kitaev, Freed] 'Invertible states,' $|\psi\rangle$ means $\exists |\psi^{-1}\rangle$, \mathbf{U} s.t.

$$|\psi
angle\otimes|\psi^{-1}
angle= {f U}|0
angle^{\otimes 2L^d} \ {\sf has} \ s=0.$$

Weak area law: a unique groundstate on any closed manifold (no topological order, but can still be interesting as SPTs) implies the existence of an inverse state and the area law.

Graphical proof of weak area law:

step 1: 'edge inverse' kills edge states

step 2: make adiabatic path to $|0\rangle^{\otimes}$ on \mathcal{T}^d_{-}

Pirsa: 16080037 Page 30/55

Gapless states and s-sourcery

- 'Entanglement Thermodynamics' constrains area law violation by gapless states
- ▶ and gives a relation between s and scaling exponents ($s = 2^{\theta}$).
- Examples of RG circuits for nontrivial critical points.

Pirsa: 16080037 Page 31/55

Entanglement bounds for gapless states

The area law is violated in groundstates of metals: $S \sim R^{d-1} \log k_F R$.

This violation is a symptom of many low-energy extended modes.

 \implies can be seen in thermodynamics.

Pirsa: 16080037 Page 32/55

Entanglement bounds for gapless states

The area law is violated in groundstates of metals: $S \sim R^{d-1} \log k_F R$. This violation is a symptom of many low-energy extended modes.

 \implies can be seen in thermodynamics.

Result: [Swingle-JM, 1505.07106, PRB]

If: thermal entropy of a scale-invariant state is $s(T) \sim T^{\frac{d-\theta}{z}}$ $z \equiv \text{dynamical exponent}$ $\theta \equiv \text{hyperscaling violation exponent}$ (anomalous dimension of T_{tt})

Then: the groundstate EE obeys the area law when $\theta < d-1$ and $0 < z < \infty$. (Recall: a Fermi surface has

 $\theta = d - 1.$

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

Pirsa: 16080037 Page 33/55

Entanglement thermodynamics

Idea: Recast EE as local thermodynamics problem $(T = T_x)$ Find $\sigma_A \simeq Z^{-1} e^{-\sum_x \frac{1}{T_x} H_x}$ $(H \equiv \sum_x H_x)$ local Gibbs state) such that $S(\sigma_A) \geq S(\rho_A)$.

Pirsa: 16080037 Page 34/55

Entanglement thermodynamics

Crucial Fact (local thermodynamics): For scaling purposes,

$${
m tr} {f H}_A {f \sigma}_A \simeq E_{g,A} + \int_A d^d x \; e(T_x)$$
 $-{
m tr} {f \sigma}_A \log {f \sigma}_A \simeq \int_A d^d x \; s(T_x)$

 $e(T_x) = Ts(T_x)$, bulk thermodynamic densities at temp T_x .

Pirsa: 16080037 Page 35/55

Entanglement thermodynamics

Crucial Fact (local thermodynamics): For scaling purposes,

$${
m tr} {f H}_A {m \sigma}_A \simeq E_{g,A} + \int_A d^d x \; e(T_x)$$
 $-{
m tr} {m \sigma}_A \log {m \sigma}_A \simeq \int_A d^d x \; s(T_x)$

 $e(T_x) = Ts(T_x)$, bulk thermodynamic densities at temp T_x .

Why: True if $1 \gg \frac{\nabla T_x}{T_x} \cdot \xi_x$ (for all x) $(\xi_x \equiv \text{local correlation length}).$

But: let $\sigma_A(\tau) \equiv Z(\tau)^{-1} e^{-\frac{1}{\tau} \sum_x \tilde{\mathbf{H}}_x/T_x} \stackrel{\tau \to 1}{\to} \sigma_A$.

This state has temperature $T_x(\tau) = \tau T_x$, $\implies \xi_x(\tau) \sim T_x(\tau)^{-1/z} \propto \tau^{1/z}$

So (unless $z = \infty$!) the figure of merit for local thermo in state $\sigma_A(\tau)$ is

$$1 \gg \underbrace{\frac{\nabla T_{x}(\tau)}{T_{x}(\tau)}}_{\sim \tau^{0}} \cdot \underbrace{\xi_{x}(\tau)}_{\sim \tau^{-1/z}} \stackrel{\tau \to \infty}{\to} 0.$$

4 - > 4 - > 4 - > 4 - > 4 - >

 $S(\sigma_A(au)) = au^{rac{d- heta}{z}} S(\sigma_A) \implies$ scales the same way with region size.

Pirsa: 16080037 Page 36/55

Scaling in strip geometry

$$T_x \sim \begin{cases} x^{-z} \\ \infty \end{cases}$$
 (no) 0 (sometimes: frustration free **H**)

$$\implies e(T_x) \sim x^{-z+\theta-d}, s(T_x) \sim x^{\theta-d}$$

$$S_A \le -\mathrm{tr} \sigma_A \ln \sigma_A \sim R^{d-1} \int_a^w dx \ x^{-d+\theta}$$

$$\sim R^{d-1} \quad \left(a^{-d+\theta+1} - w^{-d+\theta+1} \right) \stackrel{w \to \infty}{\to} \infty \text{ only if } d < 1 + \theta$$

Hence: scale invariant states with $\theta < d-1$ obey the area law.

Connection to *s*-sourcery

[Swingle-JM, 1505.07106]

If our scaling theory is an s-source RG fixed point

$$S(2R) \le sS(R) + kR^{d-1}.$$

Assume saturated (if not, can use smaller s) \Longrightarrow

$$S_{A} = k \left(\frac{R}{a}\right)^{d-1} \sum_{n=0}^{\log_{2}(w/a)} \left(\frac{s}{2^{d-1}}\right)^{n}$$

$$\stackrel{R\gg w\gg a}{\simeq} k \left(\frac{R}{a}\right)^{d-1} \left(1 - \left(\frac{a}{w}\right)^{d-1 - \log_{2} s} + \cdots\right)$$

Compare subleading terms in EE of strip:

$$s=2^{\theta}$$

(Fermi surface has $\theta = d-1$, hence $s = 2^{d-1}$, marginally violates area law. \checkmark)

Gapless states with explicit s = 1 RG circuits

Expectation: CFTs are s = 1 fixed points.

 ∞ many examples of d=2 quantum critical points

which are exact s=1 fixed points: 'Square-root states' [Kimball 1979]

Pirsa: 16080037 Page 39/55

Gapless states with explicit s = 1 RG circuits

Expectation: CFTs are s = 1 fixed points.

 ∞ many examples of d=2 quantum critical points which are exact s=1 fixed points: 'Square-root states' [Kimball 1979]

- Classical stat mech model in d space dimensions
- configurations s
- Boltzmann weight $e^{-\beta h(s)}$ $\mathcal{Z} \equiv \sum_s e^{-\beta h(s)}$
- coolness $\beta = 1/T$

- Quantum system
 in d space dimensions
- states $|s\rangle$ (orthonormal)
- g.s. wavefunction

$$|h,eta
angle = \mathcal{Z}^{-1/2} \sum_s e^{-eta h(s)/2} |s
angle$$

coupling

e.g. near-neighbor Ising model:
$$h(s) = \sum_{\langle ij \rangle} s_i s_j$$

$$extstyle egin{aligned} & \mathbf{Z}_i | s
angle = s_i | s
angle. & \mathsf{Parent Hamiltonian:} \ & \mathbf{H} = \sum_i \left(-\mathbf{X}_i + e^{-eta \mathbf{Z}_i \sum_{\langle i | j \rangle} \mathbf{Z}_j}
ight) \end{aligned}$$

correlations
$$\langle Z_r Z_{r'} \rangle$$
 classical critical point

correlations of diagonal operators
$$\langle gs|\mathbf{Z}_{r}\mathbf{Z}_{r'}|gs \rangle$$
 quantum critical point

Gapless states with explicit s = 1 RG circuits

Expectation: CFTs are s = 1 fixed points.

 ∞ many examples of d=2 quantum critical points which are exact s=1 fixed points: 'Square-root states' [Kimball 1979]

- Classical stat mech model in d space dimensions
- configurations s
- ullet Boltzmann weight $e^{-eta h(s)}$ $\mathcal{Z} \equiv \sum_s e^{-eta h(s)}$
- coolness $\beta = 1/T$

- Quantum system
 in d space dimensions
- states $|s\rangle$ (orthonormal)
- g.s. wavefunction

$$|h,eta
angle = \mathcal{Z}^{-1/2} \sum_s e^{-eta h(s)/2} |s
angle$$

coupling

e.g. near-neighbor Ising model:
$$h(s) = \sum_{\langle ij \rangle} s_i s_j$$

$$o$$
 $\mathbf{Z}_i|s
angle = s_i|s
angle.$ Parent Hamiltonian: $\mathbf{H} = \sum_i \left(-\mathbf{X}_i + e^{-eta \mathbf{Z}_i \sum_{\langle i|j \rangle} \mathbf{Z}_j} \right)$

correlations
$$\langle Z_r Z_{r'} \rangle$$
 classical critical point

correlations of diagonal operators
$$\langle gs|\mathbf{Z}_{r}\mathbf{Z}_{r'}|gs \rangle$$

• quantum RG circuit with
$$s=1$$

RG circuits for square root states

2d classical Ising TRG scheme: $\mathcal{Z} = \sum_{abcd...} T_{abc} T_{ade} \cdots$

Two parts of classical RG step

[Levin-Nave]:

[Different use of related machinery: Evenbly-Vidal, TNR]

2 :
$$\sum_{abc} S_{akc} S_{cjb} S_{bia} = T'_{ijk}$$

$$\sum_{abc} \sqrt[k]{c} = \sqrt[k]{c}$$

Pirsa: 16080037 Page 42/55

RG circuits for square root states

2d classical Ising TRG scheme: $\mathcal{Z} = \sum_{abcd...} T_{abc} T_{ade} \cdots$

Two parts of classical RG step

[Levin-Nave]:

$$1: \sum_{e} T_{abe} T_{cde} = \sum_{f} S_{acf} S_{bdf}$$

$$\sum_{e} \sum_{b} c = \sum_{f} \sum_{b} c$$

[Different use of related machinery: Evenbly-Vidal, TNR]

2 :
$$\sum_{abc} S_{akc} S_{cjb} S_{bia} = T'_{ijk}$$

$$\sum_{abc} \sqrt[k]{b} = \sqrt[k]{b}$$

$$\left| \mathbf{U}_{1} \right|_{b}^{a} \left| \mathbf{U}_{2} \right|_{c}^{c} \otimes \left| \mathbf{0} \right\rangle_{f} = \sum_{f} \left| \mathbf{U}_{2} \left| \mathbf{U}_{2} \right|_{c}^{c} \right|_{c}^{c} \otimes \left| \mathbf{0} \right\rangle_{e} \cdot \left| \mathbf{U}_{2} \left| \mathbf{U}_{2} \left| \mathbf{U}_{2} \left| \mathbf{U}_{2} \right|_{c}^{c} \right|_{c}^{c} \right|_{c}^{c} \right|_{c}^{c} \otimes \left| \mathbf{0} \right\rangle_{e} \cdot \left| \mathbf{U}_{2} \left| \mathbf{U}_{$$

$\mathbf{U} = \prod \mathbf{U}_2 \prod \mathbf{U}_1$

Fixed point of classical TRG

$$\implies$$
 $s=1$ fixed point.

[JM, B Swingle, Shenglong Xu, 1602.02805, PRB]

Mixed *s*-sourcery

The extension of tensor network ideas to open quantum systems will be useful. Even for thermal equilibrium, given $\rho=Z^{-1}e^{-\beta H}$, expectations are not, in general, computable.

Pirsa: 16080037 Page 44/55

Mixed *s*-sourcery

[Swingle-JM, 1607.05753]

What should replace the unitaries in the s-source RG circuit?

A sequence of states $\{\rho_L\}$ form a **purified** s source fixed point if there exists a sequence of purifications $\{|\sqrt{\rho_L}\rangle_{12}\}$ with $\operatorname{tr}_2(|\sqrt{\rho_L}\rangle\langle\sqrt{\rho_L}|_{12})=\rho_L$ and

$$|\sqrt{
ho_{2L}}
angle = ilde{V}\left(\underbrace{|\sqrt{
ho_L}
angle \otimes ... \otimes |\sqrt{
ho_L}
angle}_{ extstyle ext{ times}} \otimes |0...0
angle
ight)$$

where $|0...0\rangle$ is a product state of the appropriate size and \tilde{V} is a quasi-local unitary on A^sE . i.e.: \exists a quasilocal channel $\rho_{2L} = \mathcal{E}\left(\rho_L^{\otimes s} \otimes |0...0\rangle\langle 0...0|\right)$

• The entropy can be volume law, but the mutual info is still area law:

$$I(A_{2R}, A_{2R}^c) \leq sI(A_R, A_R^c) + kR^{d-1}.$$

• Local channel preserves locality of operators \implies efficiently contractible.

4 D > 4 D > 4 E > 4 E > E 990

Pirsa: 16080037 Page 45/55

Local free fermions are mixed s = 0

[Swingle-JM, 1607.05753]

$$H = \sum_{xy} c_x^\dagger h_{xy} c_y + h.c., \qquad ext{with } h_{xy} o 0 ext{ for } |x-y| \gg a$$

thermal eqbm:
$$\rho_T = e^{-\mathbf{H}/T}/Z = \operatorname{tr}_2 \underbrace{\sum_E \sqrt{\frac{e^{-\beta E}}{Z}} |E\rangle_1 |E\rangle_2}_{\equiv |T\rangle}$$
 is $s=0$.

 $|T\rangle$ is the groundstate of $(f_k = \frac{1}{e^{\epsilon_k} + 1})$

$$H_T \equiv \sum_{k} \left(-d_k^{\dagger} d_k + \tilde{d}_k^{\dagger} \tilde{d}_k \right), \qquad \left(\begin{smallmatrix} d_k \equiv \sqrt{f_k} c_k + \sqrt{1 - f_k} \tilde{c}_k, \\ \tilde{d}_k \equiv -\sqrt{f_k} c_k + \sqrt{f_k} \tilde{c}_k \end{smallmatrix} \right)$$

which is gapped, local and adiabatically connected to

$$H_{\infty} = -\sum_{\mathbf{x}} \left(c_{\mathbf{x}}^{\dagger} c_{\mathbf{x}} + \tilde{c}_{\mathbf{x}}^{\dagger} \tilde{c}_{\mathbf{x}} \right), \quad |\mathsf{gs}_{\infty}
angle = \prod_{\mathbf{x}} rac{c_{\mathbf{x}} + \tilde{c}_{\mathbf{x}}}{\sqrt{2}} |0
angle \qquad ext{(ultralocal)}.$$

So the resulting a quasiadiabatic **U** gives a quasilocal channel:

$$ho_T
ightarrow {
m tr}_2 {f U} |T
angle \langle T| {f U}^\dagger = {
m product \ state}.$$

A sufficient condition for mixed s = 0

$$S(A) = c_1 \operatorname{vol}(A) + \int_{\partial A} \left(c_2 + \sum_{i>2} c_i f_i(K, R) \right) + \mathcal{O}(\ell^d e^{-\ell/\xi}) \quad (\star)$$

 $\ell \equiv \text{linear size of } A$.

$$\implies$$
 $I(A:C|B) \approx 0 \text{ if } {}^{AB+BC-B-ABC=0}_{\text{and } \partial B+\partial(AC)=\emptyset}.$

[Fawzi-Renner 15]: approximate quantum Markov chains can be reconstructed from marginals via a channel on the buffer.

Pirsa: 16080037 Page 47/55

A sufficient condition for mixed s = 0

$$S(A) = c_1 \operatorname{vol}(A) + \int_{\partial A} \left(c_2 + \sum_{i>2} c_i f_i(K, R) \right) + \mathcal{O}(\ell^d e^{-\ell/\xi}) \quad (\star)$$

 $\ell \equiv \text{linear size of } A$.

$$\implies$$
 $I(A:C|B) \approx 0 \text{ if } {}^{AB+BC-B-ABC=0}_{\text{and } \partial B+\partial(AC)=\emptyset}.$

[Fawzi-Renner 15]: approximate quantum Markov chains can be reconstructed from marginals via a channel on the buffer.

Make a cellular decomposition of space (e.g. d = 2) (all regions $> \xi$)

$$I(p\text{-cells}: (p-1)\text{-cells}|\mathsf{buffer}) pprox \mathcal{O}(N_{\mathsf{cells}}e^{-\ell/\xi}).$$

If so, then here is the state:

$$\rho = \rho_{\text{2-cells} \cup \text{1-cells} \cup \text{0-cells}} \approx \mathcal{N}_{1 \to 2}(\mathcal{N}_{0 \to 1}(\mathcal{N}_{\emptyset \to 0}(\cdot)))$$

> 4 ± 9

When is cellular reconstruction possible? (*) is true for:

- invertible states.
- CFT at finite temperature.
- states with classical gravity duals.
- ▶ states which are not finite-T quantum memories [Hastings def of TO]: adiabatically connected to $T=\infty \implies$ quasilocal channel to product. Run the construction backwards: an array of bubbles-of-Nothing.

bubble of Nothing:

Pirsa: 16080037 Page 49/55

When is cellular reconstruction possible? (*) is true for:

- invertible states.
- CFT at finite temperature.
- states with classical gravity duals.
- ▶ states which are not finite-T quantum memories [Hastings def of TO]: adiabatically connected to $T = \infty$ \Longrightarrow quasilocal channel to product. Run the construction backwards: an array of bubbles-of-Nothing.

Two possible obstructions: edge modes and TEE [Preskill-Kitaev]. For p-form gauge theory at T=0, $I_{p-1\to p}$, $I_{d-p-1\to d-p}\neq 0$

Pirsa: 16080037 Page 50/55

When is cellular reconstruction possible? (*) is true for:

- invertible states.
- CFT at finite temperature.
- states with classical gravity duals.
- ▶ states which are not finite-T quantum memories [Hastings def of TO]: adiabatically connected to $T = \infty$ \Longrightarrow quasilocal channel to product. Run the construction backwards: an array of bubbles-of-Nothing.

Two possible obstructions: edge modes and TEE [Preskill-Kitaev]. For p-form gauge theory at T=0, $I_{p-1\to p}$, $I_{d-p-1\to d-p}\neq 0$

This construction was used in [Mahajan et al, 1608.05074] to make efficient representations of non-eqbm steady states associated with dissipative transport. The idea: despite extensive von Neumann entropy, such states have low entanglement, hence tensor network representations.

Pirsa: 16080037 Page 51/55

Questions

Q: Is the thermal double $\sum_n \sqrt{\frac{e^{-\beta H}}{Z}} |n\rangle |n\rangle$ always the groundstate of a local, gapped **H**?

We showed 'yes' for free fermions and for sqrt states.

'Yes' lets us use groundstate s-sourcery.

Q: Can we improve the structure of the channel? The range of the resulting circuits is the thermal correlation length $(\to \infty \text{ as } T \to 0)$.

Fawzi-Renner result doesn't take advantage of locality within the buffer B.

U will be more local if we incorporate the s=1 groundstate circuit near the IR.

Pirsa: 16080037 Page 52/55

Geometry is made of entanglement

This is a step in a larger program to understand the emergence of space in gauge/gravity duality:

entanglement determines (much of)* bulk geometry [Swingle, van Raamsdonk, ...]

Entanglement of a subregion bounded by the minimum number of bonds which must be cut to remove it from the graph.

$$\mathcal{H}, \mathbf{H} \overset{\mathsf{RG} \ \mathsf{circuits}}{ o} \overset{\mathsf{[Swingle-van} \ \mathsf{R, Faulkner} \ \mathsf{et} \ \mathsf{al}]}{ o} G_{\mu\nu} = T_{\mu\nu}$$

* Interesting exception: behind horizons, where time is emergent, extra data about the *complexity* of the state is required. [Stanford group]

Jaco

Geometry is made of entanglement

This is a step in a larger program to understand the emergence of space in gauge/gravity duality:

entanglement determines (much of)* bulk geometry [Swingle, van Raamsdonk, ...]

Entanglement of a subregion bounded by the minimum number of bonds which must be cut to remove it from the graph.

$$\mathcal{H}, \mathbf{H} \overset{\mathsf{RG}}{ o} \overset{\mathsf{circuits}}{ o} \overset{[\mathsf{Swingle-van}}{ o} \overset{\mathsf{R, Faulkner}}{ o} \overset{\mathsf{et al}}{ o} G_{\mu\nu} = T_{\mu\nu}$$

* Interesting exception: behind horizons, where time is emergent, extra data about the *complexity* of the state is required. [Stanford group]

A unification of these quantities is in order!

Pirsa: 16080037

The end.

Thank you for listening.

State of matter	Z	5	θ	EE
Insulators, etc.	Gap	0	n/a	Area
SSB, discrete	Gap	0	n/a	Area
IQHE (invertible)	Gap	1	n/a	Area
FQHE	Gap	1	n/a	Area
Topological states	Gap	1	n/a	Area
Haah's cubic code $(d=3)$	Gap	2	n/a	Area
SSB, continuous $(d > 1)$	1	1	0	Area
QCP (conformal), $d=1$	1	1	0	Area*Log
QCP (conformal), $d > 1$	1	1	0	Area
Quadratic band touching	2	≤ 1	0	Area
Fermi liquids	1	2^{d-1}	d-1	Area*Log
Spinon Fermi surface	3/2?	2^{d-1}	d-1	Area*Log
Diffusive metal, $d=3$	2	2^{d-2}	d-2	Area
QED	1	1	0	Area
QCD	Gap	1*	n/a	Area

Pirsa: 16080037 Page 55/55