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Abstract: Thistalk, based on work with Brian Swingle, will describe the s-sourcery program.
Its goal isto extend the lessons of the renormalization group to quantum many body states.

Pirsa: 16080037 Page 1/55



Hierarchical growth of entangled states
or

's-sourcery’

John McGreevy (UCSD)

based on work
(arXiv:1407.8203, 1505.07106, 1602.02805, 1607.05753, in progress)

Brian Swingle (Stanford)

and

Shenglong Xu (UCSD)

PLAN:
» Gapped groundstates
» Gapless groundstates

» Mixed states
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Big goal:

Understand the structure of entanglement in physical states of
quantum field theories
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Big goal:

Understand the structure of entanglement in physical states of
quantum field theories

necessary for numerical simulation

» (how much resources are required? where in Hilbert

space to look?) W
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Big goal:

Understand the structure of entanglement in physical states of
quantum field theories

necessary for numerical simulation

» (how much resources are required? where in Hilbert

space to look?) /f)%

useful as a diagnostic
» (how to distinguish different phases with the same

SymmetriES?) [Fig: T. Grover|
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Big goal:

Understand the structure of entanglement in physical states of
quantum field theories

necessary for numerical simulation

» (how much resources are required? where in Hilbert

space to look?) Q%

useful as a diagnostic
» (how to distinguish different phases with the same

SymmetriES?) [Fig: T. Grover|

» a crucial point of contact with holographic duality

(entanglement entropy ~ area )

Pirsa: 16080037 Page 6/55



\‘%

Context
> H = ®xHx x5

» H =) _Hx hamiltonian ‘motif’
(rules out many horrible pathologies). support of Hx is localized.

» families of systems labelled by (linear) system size L:
H; with groundstate(s) {|v1)}

Coarsely-stated, impossible desideratum: low-depth unitary U which
constructs the groundstate from smaller unentangled subsystems :

77
L) = U|0)®t = B

---------
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Context T
> H= ®xHx :

» H =) _Hx hamiltonian ‘motif’
(rules out many horrible pathologies). Support Of Hx iS Ioca“ZEd.

» families of systems labelled by (linear) system size L:
Hy with groundstate(s) {|v)}

Coarsely-stated, impossible desideratum: low-depth unitary U which
constructs the groundstate from smaller unentangled subsystems :

i) 2 Uj0)®t £ g
Warmup example — 00 00 00—
(d=1,s=0):
H(n) =Y (1+ (—1)"n)cicn+1 + hc e o o o o o o o

adiabatically deform 1d band insulator
._'. .—. .—. .__. Deform weak

bonds to zero

to product state

H(n)

H(0)

? s 1
(n)) Construct: U = Pe' Jo 97H(n)

»(0)) (1))
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There are two problems with this plan, in general
H(n) oo

H(0) »H (1) L1,
poct pround (n)) Construct: U = Pe' Jo @mH(n)

1(0)) ‘(.(Il::

1. (Technical, solvable) Even if H(n) all have gap > A > 0,
adiabatic evolution has a nonzero failure probability (per unit

time, per unit volume).
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There are two problems with this plan, in general
H(n)

H(0) »H(1) 1 (2 4
uct ground state (n)) state ofineres Construct: U = Pe'Jo #7H()

1(0)) ‘f'(||:1

1. (Technical, solvable) Even if H(n) all have gap > A > 0,
adiabatic evolution has a nonzero failure probability (per unit

time, per unit volume).

SOI Utlon [Hastings, Wen].

S O S K=—i [ dtF(t)e"™M, H(n)e Hmt
i0, | K(n)lY "y F
kiR (mu i [ dnK(n) F(t) odd, rapidly decaying, F(0) =0,
e 2 . ;

ﬁ(w):—i,hu\ EA

Quasilocal means:
U=e", K=Y K., K=Y K.
K., supported on disk of radius r, | Ky, | < e™"
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Context T
» H —_ ®XHX AT

» H =) Hx hamiltonian ‘motif’
(rules out many horrible pathologies). Support Of Hx iS Ioca[iZEd.

» families of systems labelled by (linear) system size L:
H; with groundstate(s) {|v1)}

Coarsely-stated, impossible desideratum: low-depth unitary U which
constructs the groundstate from smaller unentangled subsystems :

i) = UJ0)®* iy
Warmup example — 00 00 00—
(d=1.5=0):
H(n) =3 ,(1+ (=1)"n)crcnt1 + he o o0 o0 oo

adiabatically deform 1d band insulator
® o ® o e o » 3 Deform weak

bonds to zero

to product state

H(n)

H(0)

? e rl
(n)) Construct: U = Pe'Jo 97H(n)

(0)) 19(1))
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Expanding universe strategy

[Swingle, JM, 1407.8203, PRB]
Instead, we are going to grow the system
|1) — [t21) with local unitaries.

U~ -0 Usge2t, © Varge-ty

U will in general not have finite depth.
but U will have an RG structure.

Assumptions:
» Raw material: a bath of ‘ancillas’ is freely available.
» For rigorous results, energy gap A for all excitations.

» There may be groundstate degeneracy G(H|)
but the groundstates are locally indistinguishable

(a necessary condition for the state to be stable)
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Expanding universe strategy

[Swingle, JM, 1407.8203, PRB]
Instead, we are going to grow the system
|1) — [121) with local unitaries.

U~ -0 Usrge2t, © Varge-ty

U will in general not have finite depth.
but U will have an RG structure.

Assumptions:
» Raw material: a bath of ‘ancillas’ is freely available.
» For rigorous results, energy gap A for all excitations.

» There may be groundstate degeneracy G(H|)
but the groundstates are locally indistinguishable

(a necessary condition for the state to be stable)
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= 1,5 = 1 example: (Not like crystal growth!)

L sites
© 6 0000 0 0 0 0 l%}

®|oy-
10) o) |o)
| A
!
0000000000000000000 ”h>
21, sites

o) = U (lpe) ®10)").
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An s-source RG fixed point

(in d dimensions) is a system whose
groundstate on (2L)9 sites can be
made from the groundstate on L¢
sites (plus )
using a quasilocal unitary.

[Swingle, JM, 1407.8203, PRB]

(o) = U | |[¥0) - 1¥0) ®

)

M er(2rf S)
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An s-source RG fixed point

(in d dimensions) is a system whose
groundstate on (2L)9 sites can be
made from the groundstate on L¢
sites (plus )
using a quasilocal unitary.

[Swingle, JM, 1407.8203, PRB]

(o) = U | |[¥0) - [¥1) ®

s

M er(2rf S)
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An s-source RG fixed point

(in d dimensions) is a system whose
groundstate on (2L)9 sites can be
made from the groundstate on L¢
sites (plus )
using a quasilocal unitary.

[Swingle, JM, 1407.8203, PRB]

[Y2r) = U l”f’ﬁ""'ﬂL))@ d=2, o

S ® © o o ® o o o

M er(2rf S)
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How to construct U

Construct U by quasiadiabatic evolution :
(For s = 1 we must start with s = 1 copy at size L.)

Given H ( U) gapped _
H(0) >H (1)

ground state on size L (and ‘ ‘(i’) ( ], ) > ground state on size 2L
product states)

(0)) "'f(”)

Remi nder: quasilocal means
1

U=¢€K, K Y, Ky K 5", Kx.r Kx r supported on disk of radius r, | Ky ,

[Hastings, Wen]

U.
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How to construct U

Construct U by quasiadiabatic evolution :
(For s = 1 we must start with s = 1 copy at size L.)

Given
H ( I]) gapped
A
H (0) »H(1)
ground state on size L (and ‘(J) ( ,] ) > ground state on size 2L

(1)) Mesin v

u.

product states)
(0))

Remi naer (]ll.l\l'(ﬂ(.’.!' means

U=e¢€*, kK 35 Ky, K, S, Kx.r Kx.r supported on disk of radius r, | Ky , | < e™'

@
Basic property: Recursive entropy bounds: /j

(Uses Small Incremental Entangling result of

[Kitaev, Bravyi, van Acoleyn-Marien-Verstraete 2014].)

IV IA
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Why is s-source RG fixed point a useful notion?

1. Such a circuit controls the growth of entanglement with system size:
Area law theorem: any s < 1 fixed point in d > 1 enjoys an
area law for EE of subregions.

S(A) = —trpalogpa < k|OA| = kR, @ )

s > 2971 is required to violate the area law.
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Why is s-source RG fixed point a useful notion?

1. Such a circuit controls the growth of entanglement with system size:
Area law theorem: any s < 1 fixed point in d > 1 enjoys an
area law for EE of subregions.

S(A) = —trpalogpa < k|0A| = kR, @ b

s > 2971 is required to violate the area law.

2. The groundstate degeneracy satisfies: G(2L) = G(L)?

3. s (smallest possible) is a property of the phase (since by definition an

adiabatic path connects any two representatives) —> classification axis.

4. The circuit implies a MERA representation of the groundstate.
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Many interesting states are s-source fixed points

e Mean field symmetry-breaking states (S = O) SN - }
€
o—4 el
e Chern insulators, IQH (5 = 1) g H PR —
)
XXX

!
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Many interesting states are s-source fixed points

e Mean field symmetry-breaking states (S = 0) =0 =0 =5 oo }
€
@ — < e |
e Chern insulators, IQH (5 — 1) ' H e
o—@
XXX

|

e Topological states (discrete gauge theory, fractional QH), including chiral

ones (s = 1)

e Any topological quantum liquid
insensitive to smooth deformations of space ~ gapped QFT
has s = 1.
Why: place it in an expanding universe ds®> = —dn? + :El(n)zd)_('2
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Experimental example: QCD

> OUI" UnlverSE |S eXpandlng, t(louhlmg i 1010}’887'5-
» The QCD gap stays open (my, m, > 0).
» This is a gapped path from |¢;) to |Yor) .

» — d a quasilocal unitary which constructs the QCD
groundstate from a small cluster plus ancillas.
(i.e. QCD has s =1).

This suggests a new approach to simulating its groundstate which is in

principle very efficient.
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Reason to care #3: Classification of gapped states by s

ruled out with Y log., ()
thermo argument kS (R) ~~ R =P

ruled out with

>=L bound S < log(G) ‘S(R) < Rd_l l()g(R)

Not empty, but unusual . — eg.

Layers of FQHE
or
Haah's cubic code

d=3s=2
— no continuum
description!

extensive GSD!
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Reason to care #4: U ~ MERA

A MERA is a representation of the groundstate which: [Vidal]
» allows efficient computation of observables (few contractions)
» organizes the information by scale (ike wiison and AdS/CFT taught us to do)
» geometrizes the entanglement structure  [swingi]

(Best representation of 1d critical states, very hard to find in d > 1.)

10) 0)

0)
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MERA representations of s = 1 fixed points

: Trotter . .
Quasilocal U = low-depth circuit:

|¢L> it Ucircuit |¢L/2>

finite overlap requires 7 ~ log (L)

=

. . pd d(1+6)
bond dimension ~ et ~ e€'o8™ (L)

Crucial point: This construction of U cuit
requires no variational sweeps on large

system.

Numerical implementation...?

[getting started with Snir Gazit]

-rr-u

.
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Further payoff: Invertible states

> A rObUSt nOtIOFI Of lShOI’t-range-entanngd' Related ideas: [Kitaev, Freed]
‘Invertible states,’ [¢/) means 3|p~1), U s.t.

%) ® [#~1) = U|0)®2 has s = 0.
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Further payoff: Invertible states

> A rObUSt nOtIOFI Of lShOl’t-range-entanngd' Related ideas: [Kitaev, F—n:trd]
‘Invertible states,’ [¢/) means J|p~1), U s.t.

%) ® [¢~1) = U|0)®2 has s = 0.

» Weak area law: a unique groundstate on any closed manifold
(no topological order, but can still be interesting as SPTs)
implies the existence of an inverse state and the area law.
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Further payoff: Invertible states

> A FObUSt FIOtIOFI Of lShOI’t-range-entangled' Related ideas :Kn.u‘\.h F—rutrd]
‘Invertible states,’ [¢/) means J|p~!), U s.t.

) ® [~y = Ul0>m"d has s = 0.

» Weak area law: a unique groundstate on any closed manifold
(no topological order, but can still be interesting as SPTs)

implies the existence of an inverse state and the area law.

Graphical proof of weak area law:

Disks =» hemispheres

Create microscopic wormholes
/'/ (white holes) ) )
side view of H + H,e,
ﬁ v
i wormholes :
IGILJ(HIII‘QJ.IEU' L. - . By / e

/
/
— y
II I < y i 4
ll ’ ~ £
Decoupled disks with edge states f{ plicre 0—, Xpand wormhole /\ 1“
. /
/ & ~, y -‘ P 4
A . ‘* AN ;
K. Pinch off microscopic links ./ £ p (¥
Gapped sphere Hamiltonian (grey links) & -. e ‘M u \

step 1: ‘edge inverse’ step 2: make adiabatic path
kills edge states to [0)® on T¢
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Gapless states and s-sourcery

» ‘Entanglement Thermodynamics’' constrains area law violation
by gapless states

» and gives a relation between s and scaling exponents (s = 27).

» Examples of RG circuits for nontrivial critical points.
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Entanglement bounds for gapless states

The area law is violated in groundstates of metals: S ~ R/ log krR.
This violation is a symptom of many low-energy extended modes.

= can be seen in thermodynamics.
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Entanglement bounds for gapless states

The area law is violated in groundstates of metals: S ~ R !log ke R.
This violation is a symptom of many low-energy extended modes.

= can be seen in thermodynamics.

Result: [Swingle-JM, 1505.07106, PRB] Then: the groundState

If: thermal entropy of a EE obeys the area law
when § < d -1

. . . d—=o
scale-invariant state is s(7) ~ T =
and 0 < z < o0.

z = dynamical exponent

6 = hyperscaling violation exponent (Recall: a Fermi surface has

(anomalous dimension of Ti) 0=d—1)
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Entanglement thermodynamics

Idea: Recast EE as local thermodynamics problem (7 = T)
1
Find ) e Z le” 2ox Ty Hx (H Z:X H,. local Gibbs state)

such that S(oa) > S(pa) -
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Entanglement thermodynamics

Crucial Fact (local thermodynamics): For scaling purposes,

trHaoa ~ Eg,A+/ddx e(Tx)
JA

—tropslogos ~ /ddx s( Tx)
A

e(Tx) = Ts(Tx), bulk thermodynamic densities at temp Tx.
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Entanglement thermodynamics
Crucial Fact (local thermodynamics): For scaling purposes,

trHaoa ~ Eg,A+/ddx e(Tx)
JA

—tropslogos =~ d9x s(Ty)
A

e(Tx) = Ts(Tx), bulk thermodynamic densities at temp Tx.

Why: Trueif 1 > V__’:’I} - &x (for all x) (&« = local correlation length).

a H T—1
But: let o4(7)=2Z(r) le 7 Zxt/Tx "3 g,
This state has temperature Tx(7) = 7Tx, = &(7) ~ Tu(7) 7Y% x 71/%
So (unless z = oo!) the figure of merit for local thermo in state oa(7) is
VT«(7)

1 § T—+00 '
> —TX(T) Ex(7) =0
S A

~r0

~T—l/2

S(O'A(T)) =T z S(O'A) —> scales the same way with region size.
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Scaling in strip geometry

To use local thermo, we need T..
Our question is local. Choose convenient geometry.
Translation invariant in d — 1 dims (PBC). R > w > a.

Scale invariance —

X—Z

i * Ty~<¢oo (no)
|

0 (sometimes: frustration free H)
= e{Tx)~ x‘z+9_d, s(Tx) ~ x?—
Sa< —troalnos ~ R [¥dx x—90
~ RIT1  (a=d+0+1 _ y—d+0+1) W g only if d < 1+ 6

Hence: scale invariant states with 6 < d — 1 obey the area law.
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Connection to s-sourcery

[Swingle-JM, 1505.07106]

If our scaling theory is an s-source RG fixed point
S(2R) < sS(R) + kR?71 .

Assume saturated (if not, can use smaller s) =

\ 91 log,(w/a)
() T =)

n=0

R>w>a k(fjd_l (1(:/) |0g25 )

Compare subleading terms in EE of strip:

SA

s =29

(Fermi surface has @ = d — 1, hence s = 297!, marginally violates area law. v')
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Gapless states with explicit s = 1 RG circuits
Expectation: CFTs are s = 1 fixed points.

o0 many examples of d = 2 quantum critical points

which are exact s = 1 fixed points: ‘Square-root states’ [Kimball 1979

Pirsa: 16080037 Page 39/55



Gapless states with explicit s = 1 RG circuits
Expectation: CFTs are s = 1 fixed points.

o0 many examples of d = 2 quantum critical points

which are exact s = 1 fixed points: ‘Square-root states’ [Kimball 1979]
e Classical stat mech model o e Quantum system
in d space dimensions in d space dimensions
e configurations s —> e states |s) (orthonormal)
e Boltzmann weight e=#h(s) _, *gs. wavefunction
Z=3", e Bhs) lh, B) = Z2~1/2 ) 3 e—Bh(s)/2|s)
e coolness 3 =1/T — e coupling
e.g. near-neighbor Ising Zi|s) = si|s). Parent Hamiltonian:

: T, —B8Z;: Y oun
model: h(s) = Z(U) SiS; . (—X,- b 22lj) J)
: correlations of diagonal operators

correlations (Z,Z,) = - g
classical critical point 3 quantum critical point
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Gapless states with explicit s = 1 RG circuits

Expectation: CFTs are s = 1 fixed points.
o0 many examples of d = 2 quantum critical points

which are exact s = 1 fixed points: ‘Square-root states’ [Kimball 1979
e Classical stat mech model i e Quantum system
in d space dimensions in d space dimensions
e configurations s —> e states |s) (orthonormal)
e Boltzmann weight e=#h(s) ., *gs. wavefunction
Z=Y, e Phle) h,B) = 27125, e=PhE)/2s)
e coolness 3 =1/T — e coupling
e.g. near-neighbor |sing Z,‘|5> — S,'|S>. Parent Hamiltonian:
: v — AN &
model: h(s) = Z(U) SiS; - (—X,- ot 2l J)

: correlations of diagonal operators
correlations (Z,Z,) = 5 P
classical critical point w—— quantum critical point
e real-space RG scheme — e quantum RG circuit with s =1
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RG circuits for square root states
2d classical Ising TRG scheme: Z =3, . Tapc Tade" "

Two parts of classical RG step

[Different use of related machinery: Evenbly-Vidal, TNR]

[Levin-Nave]. ) - /
2: Zabc Sakcscjbsbia i T,'J.'k
! 5 Ze abe cde — Zf acfsbdf N ki

Ze b/)_< I Zabc fl = T/
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RG circuits for square root states
2d classical Ising TRG scheme: Z =3, . Tapc Tade " -

Two parts of classical RG step :
[Different use of related machinery: Evenbly-Vidal, TNR]

[Levin-Nave]. . — !/
21 ) abe SakeScibSbia = T
& Ze abe cde — Zf acfsbdf . j K

Ze b>_< K Zabc ?'Tl'“ - Y

Quantum version:

U |} > ) @l =,

hl{\u> & ‘0>e ' U2 Zabc |

U=]]Uz2][U;
Fixed point of

classical TRG
—> s = 1 fixed point.

[JM, B Swingle, Shenglong Xu, 1602.02805, PRB]
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Mixed s-sourcery

The extension of tensor network ideas to open quantum systems will be useful.

1

Even for thermal equilibrium, given p = 2" "e i expectations are not, in

general, computable.
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Mixed s-sourcery

[Swingle-JM, 1607.05753]

What should replace the unitaries in the s-source RG circuit?

A sequence of states {p.} form a purified s source fixed point if there exists a
sequence of purifications {|/pr)12} with tr2(|\/pr)(\/pL|12) = pL and

[Py =V | |v/p1) ® .. ® |v/pr) ®|0...0)

el

s times

where |0...0) is a product state of the appropriate size and V is a quasi-local
unitary on A°E. i.e.: 3 a quasilocal channel py. = & (p* ® [0...0)(0...0|)

® The entropy can be volume law, but the mutual info is still area law:

I(Azr, ASR) < sl(Ar, AR) + kR,

® Local channel preserves locality of operators = efficiently contractible.
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Local free fermions are mixed s = 0 T ey

= Z c:[hxycy + h.c., with hy, — 0 for [x — y| > a

xy
e—BE
thermal egbm: p7 = H/T/Z = trs Z |E 1|E)2 iss=0.
ET%

| T) is the groundstate of (f, = 1)
Hr =Y (—dld +dld,), (/o v i)
k
which is gapped, local and adiabatically connected to

C C
Hy = — Z (CICX -1 E}:Ex) . \gs H x T x (ultralocal).

X

So the resulting a quasiadiabatic U gives a quasilocal channel:
pr — traU|TH{(T|U" = product state.
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A sufficient condition for mixed s = 0

S(A) = civol(A) + [M 2+ Y cifi(K,R) | +O(t%e %) (%)
: i>2

/ linear size of A .

, V(g AB+BC — B — ABC =0
— I(A: C|B) =0 if "4 8B + O(AC) =0 -

[Fawzi-Renner 15]: approximate quantum Markov chains can be

reconstructed from marginals via a channel on the buffer.
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A sufficient condition for mixed s = 0

S5(A) = civol(A) + /GA c2 + Z ¢ifi(K,R) | + O(%e %) (%)
i>2

/ linear size of A .

— - ~ () if AB+BC — B — ABC =0
I(A: CIB) QiR T LS e =0 I |

[Fawzi-Renner 15]: approximate quantum Markov chains can be

reconstructed from marginals via a channel on the buffer.

Make a cellular decomposition of space (e.gi}: 2)

(all regions > &)

I(p-cells : (p — 1)-cells|buffer) =~ O(Neense /).

If so, then here is the state: e WO
,'!."i _‘-In_"?!
o W
~ 3 "1 ) 1= »,
P = P2-cellsUl-cellslU0-cells ~ Nl—)2(NO—>1(NU)—>0('))) w > H':'I
™~ )
™
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When is cellular reconstruction possible? (*) is true for:

vy v v ¥

invertible states.
CFT at finite temperature.
states with classical gravity duals.

states which are not finite- T quantum memories [Hastings def of TO] :

adiabatically connected to T = oo == quasilocal channel to product.

Run the construction backwards: an array of bubbles-of-Nothing.

bubble of Nothing: \"/ [Witten 1985]
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When is cellular reconstruction possible? () is true for:
invertible states.

CFT at finite temperature.

states with classical gravity duals.

states which are not finite- T quantum memories [Hastings def of TO] :

adiabatically connected to T = oo == quasilocal channel to product.

vy v v ¥

Run the construction backwards: an array of bubbles-of-Nothing.

bubble of Nothing: Q [Witten 1985]

fadn APwe 0
Wﬂ““u“ X
= AR

Two possible obstructions: edge modes and TEE [preskilikitaev).

For p-form gauge theory at T =0, lh—1-p, ld—p—15d—p # 0
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When is cellular reconstruction possible? (*) is true for:

» invertible states.

» CFT at finite temperature.

» states with classical gravity duals.

» states which are not finite- T quantum memories [Hastings def of TO] :
adiabatically connected to T = oo == quasilocal channel to product.
Run the construction backwards: an array of bubbles-of-Nothing.

bubble of Nothing: Q [Witten 1985]
e 8
ﬁh““ Yy
Wt
Two possible obstructions: edge modes and TEE [preskil-kitaev.
For p-form gauge theory at T =0, lh—1-p, ld—p—13d—p # 0
This construction was used in [Mahajan et al, 1608.05074) to make efficient

representations of non-eqbm steady states associated with dissipative transport.
The idea: despite extensive von Neumann entropy, such states have low

entanglement, hence tensor network representations.
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Questions

Q: Is the thermal double } ezﬁH |n)|n) always the groundstate

of a local, gapped H?

We showed ‘yes’ for free fermions and for sqrt states.

‘Yes' lets us use groundstate s-sourcery.

Q: Can we improve the structure of the channel? The range of the
resulting circuits is the thermal correlation length (— oo as T — 0).
Fawzi-Renner result doesn't take advantage of locality within the buffer B.

U will be more local if we incorporate the s = 1 groundstate circuit near the IR.
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Geometry is made of entanglement
This is a step in a larger program to understand the emergence of
space in gauge/gravity duality:

entanglement determines (much of )" bulk geometry [Swingle, van Raamsdonk,

Entanglement of a subregion bounded by the minimum number of bonds which

must be cut to remove it from the graph.
RG circuits ' ;2 [Swingle-van R, Faulkner et al]

* Interesting exception: behind horizons, where time is
emergent, extra data about the complexity of the state is

required. [Stanford group)
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Geometry is made of entanglement
This is a step in a larger program to understand the emergence of
space in gauge/gravity duality:

entanglement determines (much of )" bulk geometry [Swingle, van Raamsdonk,

26 step \o/ }o/ \o/ \o—/ . ds® = dS?
. :\“_o_‘;’:i 7 \: - /..
—~— “-:0,_»-"” = sl

Entanglement of a subregion bounded by the minimum number of bonds which

must be cut to remove it from the graph.

RG circuits . ;2 [Swingle-van R, Faulkner et al]
Interesting exception: behind horizons, where time is r ,,W
emergent, extra data about the complexity of the state is H
i Z TN
rEQUIFEd. [Stanford group] v \

A unification of these quantities is in order! llu
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The end.

Thank you for listening.

| State of matter z s 6 EE

\ Insulators, etc. Gap 0 n/a Area

| SSB, discrete Gap 0 n/a | Area

| IQHE (invertible) | Gap 1 'n/a | Area

\_ FQHE Gap 1 n/a Area

| Topological states Gap 1 n/a Area

| Haah's cubic code (d = 3) Gap 2 n/a Area
SSB, continuous (d > 1 1 1 0 Area

| QCP (conformal), d =1 1 1 0 Area*Log
QCP (conformal), d > 1 1 1 0 Area

|

\_ Quadratic band touching 2 <1 0 Area

| Fermi liquids 1 29-1 | d—1 | Area*Log

| Spinon Fermi surface 3/27 29-1 | d—1 | Area*Log

| Diffusive metal, d = 3 2 2°7% | d—2 | Area

‘_ QED E. 3 0 Area

| QCD Gap ' g n/a Area
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