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Interference: quantum and higher-order

2-slit experiment (and other interferometry) often thought (e.g.
Feynman Lectures, atom interferometry example) essence of
quantum weirdness

@ As Feynman stressed, quantum weirdness is interference
exhibited by probabilities rather than by definite physical quantities
as in classical interference

@ As Feynman also stressed, quantum interference relates to
disturbance by information-gathering: which-way detectors wash it
out

Sorkin: hierarchy of interference measures for “k-slit” experiments
in a “histories” framework for quantum theory.

o Iy =0 = fp =0

@ Quantum theory has /3 = 0 but can have »b # 0; classical has
I = 0.
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This talk (most results w/Ududec, Emerson):

@ We formulate a notion of k-slit experiment in the general
probabilistic theories (GPT) framework

@ We adapt Sorkin's hierarchy of interference measures to such
experiments

@ We formulate a notion of irreducible coherence between a set of k
faces.

@ Main result: k-th order interference arises from irreducible k-face
coherence. Implications for state tomography.

@ Also: Jordan algebraic theories have I3 = 0 (for the class of
neutral interference experiments).

@ Derivation (HB, Mller, Ududec) of Jordan algebraic and quantum
theory from postulates including no higher order interference.
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Probabilistic Theories

Quantum theory doesn't have higher-order interference so we need a
more general framework.

General Probabilistic Theories (GPT) framework commonly used to
study informational and physical properties of quantum theory and
information processing, and to formulate possible new physics, in a
much broader, but flexible and probabilistically consistent framework.
Theory: Set of systems

System: Specified by bounded convex sets of allowed states, allowed
measurements, allowed dynamics compatible with each measurement
outcome. (Could view as a category.)

Composite systems: Rules for combining systems to get a composite
system, e.g. tensor product in QM. (Could view as making it a
symmetric monoidal category). Composites won't appear much in this
talk.
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State spaces and measurements

Normalized states of system A: Convex compact set Q24 of dimension
d — 1. embedded in A~R? as the base of a regular cone A, of
unnormalized states (nonnegative multiples of Q4). [Define cone.]
Measurement outcomes: linear functionals A — R called effects
whose values on states in Q4 are in [0.1].

Unit effect uy has ua(Q24) = 1.

Measurements: Indexed sets of effects ¢; with ¥, e; = ua (or
continuous analogues).

The effects generate the dual cone A’ , of functionals honnegative on
A,

A Is regular: closed, generating, convex, pointed.

Define a> b.=a—be A.. This makes A an ordered linear space
(inequalities can be added and multiplied by positive scalars).
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Convex structure from operational considerations

@ From a “phenomenological description”: preparations x
measurement outcomes — probabilities, get convex, bounded
sets of states , effects L C [0, u] by “dividing out probabilistic
equivalence”: identify preparations with same prob for all
outcomes; identify outcomes that have same prob in all states.
Both empirics and theory involved: actual and idealized/expected
phenomenology. (“operational... or aspirational?”)

For operational reasons, L is convex, full-dimensional and closed
under e+ Uy — e. For convenience, topologically closed (hence
compact).

We'll assume L = [0, ua]. (“all mathematically consistent effects
are allowed.”) Desirable to relax this.

Important caveat: In looking for need to extend existing theories,
we may look for probabilistic distinctions between
measurement/preparation procedures that existing theory might
not make room for & existing experiments not have detected. Or

we might need new procedures.
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Transformations, dynamics

@ Transformations from system A to system B: linear maps
I':A— Bsuchthat T(AL)C A, and u(Tx) <u(x)forall x € A..
(Generalizes trace non-increasing positive maps.)

@ Normalization-preserving if T(Q24) C Qg. (Generalizes
trace-preserving.)

@ Reversible transformations A — A have T(Q4) = Q4.
(Generalizes p — UpU' for U unitary).

@ Could specify for each A. B, a convex semigroup of “allowed"

transformations (these could be the morphisms (or induced by
morphisms) in a category-theoretic formulation).
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Classical: A is the space of n-tuples of real numbers; u(x) =Y, X;.
So Q4 is the probability simplex, A the positive (i.e.nonnegative)
orthantx : x; > 0./€1,...n

Quantum: A = 4, (H) = self-adjoint operators on complex (f.d.) Hilbert
space H; ua(X) = Tr(X). Then Q4 = density operators. A, = positive
semidefinite operators.

Squit (or P/Rbit): Q4 a square, A, a four-faced polyhedral cone in R3.

Inner-product representations: (X.Y) = tr XY (Quantum)
(x,y)=Y,;xyi (Classical)

Quantum and classical cones are self-dual! Squit cone is not, but is
isomorphic to dual.
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Faces of convex sets

@ Face of convex C: subset S such thatif x € S & x =Y ;A;y;, where
yieC, A >0,YA=1,theny € S.

@ Exposed face: intersection of C with a supporting hyperplane.
@ Faces are convex. Exposed faces are faces.

@ For any subset S of a convex set C, the exposed face generated
by S, written ExpFaceS, is the smallest exposed face containing S.
For effects e, e := {x € Q) : e(x) = 0} and
el :={xeQ:e(x)=1} are exposed faces of Q.

l.e., exposed faces are conclusively excludable/confirmable
subsets.

Every exposed face is an € and f', for some effects e.f € [0. u].
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Extremal points and rays

@ Extremal points of a convex set: ones that can't be written as a
nontrivial convex combination of things in the set.

@ In any convex set, all extremal points are faces, though not all are
exposed.
@ They are atoms of the face lattice (and if exposed, of the exposed

face lattice): they are above the lattice 0, with nothing between
them and 0.

@ Extremal rays of V. are subsets R x, where x is extremal in a
base 2 for V.. (Only 0 is an extremal point of a pointed cone.)
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The lattice of faces

@ Lattice: partially ordered set such that every pair of elements has
a least upper bound (“join”) xVvy and a greatest lower bound
(“meet”) xAy.

@ The exposed faces of any convex set, ordered by set inclusion,
form a lattice. Meet is intersection, join is FV G = ExpFace(F U G).
(Draw some examples)

@ 0 is a face according to the above definition; if Cis V., we will
exclude it from the face lattice by convention.

@ The face lattices of Q2 and of V. are isomorphic under
FoROF.O<«+ {0},
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Finite Boolean lattices

@ The set 2(X) of subsets of a finite set X, ordered by inclusion, is
a lattice. Join is union, meet is intersection.

@ It has a unique complementation: &' =X\ S:={xe X:x ¢ S}.
(It's an orthocomplementation.)

@ Join distributes over meet and vice versa, so it is a Boolean lattice
(aka Boolean algebra): a distributive, complemented lattice.
(Automatically orthocomplemented.)

@ These are the face lattices of finite-dimensional classical systems.
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Complemented and orthocomplemented lattices

Bounded lattice: Has an upper bound, called 1, and lower
bound, 0.

Complemented lattice: bounded lattice in which every element x
has a complement: x’ such that xvx’ =1, xAx’ = 0. (Remark: x’
not necessarily unique.)

complementation: choice of distinguished complement x’, for
every X.

orthocomplementation: complementation that is involutive
(x"" = x) and order-reversing, (x <y = x' > y’). (Remark:
orthocomplementation still not necessarily unique.)
Orthocomplemented lattices satisty DeMorgan’s laws:
X'y = (x\y)

X'Ny'=(xvy).
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Orthomodularity

Definition
An orthocomplemented lattice is orthomodular if
F<G = G=FV(GAF").

Think of it as “when F < G, F has a “complement relative to G”,
namely GAF’.
(Draw Boolean case.)

@ The closed subspaces of a real or complex Hilbert space, or of a
“quaternionic Hilbert space” are orthomodular lattices, so:

@ Orthomodular lattices (OMLs) are proposed in “quantum logic” as
an appropriate abstraction of this “logic” of quantum theory.

@ OMLs are precisely those orthocomplemented lattices that are
determined by their Boolean subalgebras.
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Perfectly distinguishable states

States wy..... 0w, € Q called perfectly distinguishable if there exist
allowed effects ey.....ep, with }; 6; < u, such that e;(w;) = 0j.

Sets of states Sj..... S, are perfectly distinguishable if every selection
Wy € Sy......05 € Sy is perfectly distinguishable.

Proposition (Probably folkloric)

IfSy,...,Sn C Q are perfectly distinguishable, then
ExpFace(Sy)......ExpFace(S),) are perfectly distinguishable.
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Generalized coherence

Definition

Let S be a set of not necessarily disjoint, but linearly independent
faces of the positive cone V... There is irreducible coherence between

the faces F € S, if
\/ F,@lin[U F]. (1)
FeS FeS

Linearly independent means that no F € S lies entirely in the linear
span of the others.

A state in \/g-g F but not in lin[Jgc g F] “exhibits irreducible coherence”
between the F € S. (Extension to states notin \/g.g is obvious if it has
a canonical component in lin\/g.g, €.g. if there is a canonical positive
projection onto this.)
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Interference experiments

We must associate slits/paths with transformations.

A projection P is an idempotent (i.e., PP = P) transformation.
Definition

A k-slit interference experiment is an indexed set {P,} - of

projections, where [ is a finite set and k = |/|, satisfing the following
conditions:

Q@ im_ P, is aface, which we'll call Fy, of V..
Q P,Pk=PxPs= Pk
o FJ - erJ Fi
Q J#£0 = P, #£0.
where the join in the third item is in the face lattice of V..

Do a quantum example: use mutually orthogonal set of Hilbert
subspaces.

Barnum (UNM) Higher interference and coherence Aug 3, 2016 20 /44

Pirsa: 16080024 Page 23/38



Interference experiments

We must associate slits/paths with transformations.

A projection P is an idempotent (i.e., PP = P) transformation.
Definition

A k-slit interference experiment is an indexed set {P,} - of

projections, where [ is a finite set and k = |/|, satisfing the following
conditions:

Q@ im_ P, is aface, which we'll call Fy, of V..
Q P,Pk=PxPs= Pk
o FJ - erJ Fi
Q J#£0 = P, #£0.
where the join in the third item is in the face lattice of V..

Do a quantum example: use mutually orthogonal set of Hilbert
subspaces.

Barnum (UNM) Higher interference and coherence Aug 3, 2016 20 /44

Pirsa: 16080024 Page 24/38



Interference experiments |l

Proposition

The map J +— F, is an injective homomorphism from the Boolean
lattice of subsets of J to the face lattice of Q.

|ldempotence is a kind of weak nondisturbance; that the images are
faces and we have a lattice homomorphism implies, for example that
im. Py =1im. Py \Vim, Pk, making P, k a “coherent coarsegraining”
of the transformations P, and Pk.
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Interference expressions and patterns

Define PK) .= YK =1 (—1)/-1% Py

P) is idempotent: it is open whether it is necessarily positive.
If |:={1.2}, P®® = P; + P,, and if | := {1.2.3},

P(S) = P12 -+ P13 -+ P23 — P1 — P2 — P3. (Notation: Pf'jk — P{f.j.k}-)

Definition

The k-th order interference expression (for measurement outcome e

with respect to the experiment {P,} -, on input state w) is:
Ik[e.{Ps}yci 0] == e([P1— PW](w)) = (e, [P — PW]w). (2)

The k-th order interference pattern produced by state w and final
observable {ej} is the function j — (ex, Pio) — (ex, PX w).

“Final observable” index j is like “position on screen”,
Obviously I[e.{P,},-;.®] = 0 is equivalent to PK) = P,
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A simple example with 3rd-order interference

Figure: The "Triangular Pillow’ state space of Alfsen and Shultz (Geometry of
Operator Algebras, Birkhauser, Fig. 8.1). Every face is part of an N =2 or

N = 3 interference experiment. The N = 3 experiment whose faces are
generated by subsets of the three vertices of the equatorial triangle (in the
“xy” plane) has third-order interference, for any inital state not in the
equatorial plane and any final two-outcome measurement for which the
tangencies of the zero-sets of the effects are not in the equatorial plane (i.e.,
that is sensitive to the “z" dimension).
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More simple examples with 3rd order interference

@ Convex hexahedral state space (draw).

@ Convex hull of the 8-affine-dimensional state space of a qutrit, and
two points on either side of the 8d affine plane, lying on a line
through the maximally mixed state. With slits

In all these examples, when the “slits” in the experiment correspond to
three distinguishable extremal points in the “equatorial” hyperplane,
P() projects onto this hyperplane and is positive, so represents a
potential physical "higher-order decoherence” process.

Open question: Is PX) always positive, when k > 3? (P is.) If not,
can we find interesting necessary and/or sufficient conditions?

This is important, especially for P(3) in cases when its image is
standard quantum theory. Higher-order decoherence could help
explain why higher-order interference is hard to observe.
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More general transformations?

Can we get a reasonable notion of interference experiment involving
more general transformations? Some observations:

@ General substochastic maps M, with the rule M, =¥ ;-,M;, can
give I, # 0 if we naively extend the [, definitions. Diagonal
substochastic maps give /, = 0, though.

@ Quantum possibility: experiment { T}y, with T, : X +— FyXFy,
where E; for i € {/} are positive semidefinite, and E, = /¥, E?.
Iy = 0 if the E; commute. (Otherwise? My guess is not.)

@ Conditions like P,Px = P~k and the other in the definition of
interference experiment can be checked tomographically. But

real-world transformations will only approximately satisfy them.
We need to be able to recognize interference in such cases too!
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More general transformations, cont'd

A relatively minor tweak to the definition would allow situations where
P, is a projection, im_ P, is not a face of V., butim_ P, for J C [ are
faces of im_. P, though also not faces of V.. Then “coherent
coarsegraining” can be defined in terms of the face lattice of im. P,.
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Neutral projections

Some early versions of this paper, and Cozmin’s thesis, made stronger
assumptions on the projections in interference experiments: that they
are “filters” (see below), i.e. the duals of what Alfsen and Shultz called
compressions. But we also observed that what we used in proving
“interference arises from coherence” were only the conditions in the
above definition of “interference experiment”. An additional property
(possessed by filters) lets us say a bit more.

A projection is neutral if “whatever passes it with probability one,
passes it unchanged", i.e. U(Pw) = u(w) = Pw = .

There exist non-neutral projections whose positive image is a face.
(Examples: decohere into isomorphic subcones and then pile them on
top of each other. E.g. all states to a fixed state.)
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Neutral interference experiments and tomography

It{P,}yc is an interference experiment with |I| = N, and all the P, are
neutral, then we can do complete state tomography on any state

w € F; by doing it on all of the N — 1-slit “filtered” states Py w, for all K
K| =N-1.

Neutrality assures that information needed for tomography is not
destroyed by being disturbed by the slits, even if it doesn't interfere In
the experiment.
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Jordan Algebraic Systems

@ Pascual Jordan, (Nachr. Akad. Gottingen, 1933):

e Jordan algebra: abstracts properties of Hermitian operators.
e Symmetric product e abstracts Ae B = %(AB* BA).
o Jordan identity: ae(bea?) = (aeb)ea?.
o Formally real JA: a° + b* =0 — a= b = 0. Makes the cone of
squares a candidate for unnormalized state space.
@ Jordan, von Neumann, Wigner (Ann. Math., 35, 29-34 (1934)):
the simple f.d. formally real Jordan algebras are:

e quantum systems (self-adjoint matrices) over R.C, and H;
e systems whose state space is a ball (aka “spin factors”);
e 3 x 3 Hermitian octonionic matrices (“exceptional” JA).

@ f.d. homogeneous self-dual cones are precisely the cones of
squares in f.d. formally real Jordan algebras. (Koecher 1958,
Vinberg 1960)

@ Simple algebras correspond to irreducible cones.
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Characterization of Quantum Theory (HB, Markus
Muller, Cozmin Ududec)

Q Generalized “spectrality”: every state is in convex hull of a set of
perfectly distinguishable pure (i.e. extremal) states

©Q Symmetry: Every set of perfectly distinguishable pure states
transforms to any other such set of the same size reversibly.

© No irreducibly three-slit (or more) interference.

Q Energy observability: Systems have nontrivial continuously
parametrized reversible dynamics. Generators of one-parameter
continuous subgroups (“Hamiltonians”) are associated with
nontrivial conserved observables.

e1 -4 — standard quantum system (over C)
e1 —3 = irreducible Jordan algebraic systems, and classical.

o1 -2 — “projective” (every face the positive image of special kind of
projection we call a filter), self-dual systems
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Filters

Filter (abstracts/formalizes “slit”):
normalized positive linear map P: A — A: P? = P, with P and P* both

complemented.
Complemented means d filter P’ such that im_ P = ker_ P,

Normalized means Vo € 2 u(Pw) < 1.

@ Dual of Alfsen and Shultz’ (Geometry of State Spaces of Operator
Algebras, Birkhauser 2003) notion of compression.

@ Filters are neutral: u(Pw) = u(w) = Pw =w. Soim Pisa
face.

@ P’ is the unique complementary filter.

@ () called projective if every face is the positive part of the image
of a filter.

Quantum example: p — Qp Q where Q is the orthogonal projector onto

a subspace of Hilbert space .7,
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34. Characterizing Jordan algebraic systems

Theorem (Adaptation of Alfsen & Shultz, Thm 9.3.3)
Let a finite-dimensional system satisfy

(a) Projectivity. there is a filter onto each face

(b) Symmetry of Transition Probabilities, and

(c) Filters Preserve Purity: if w is a pure state, then Pw is a
nonnegative multiple of a pure state.

Then 2 is the state space of a formally real Jordan algebra.

Theorem (Barnum, Mller, Ududec)

(Weak Spectrality & Strong Symmetry) —> Projectivity & STP;
WS & SS & No Higher Interference —- Filters Preserve Purity.
Jordan algebraic system thus obtained must be either irreducible or
classical. (All such satisfy WS, SS, No HOI.)
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