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Abstract: In a fair comparison of the performance of a quantum algorithm to a classical one it is important to treat them on equal footing, both
regarding resource usage and parallelism. We show how one may otherwise mistakenly attribute speedup due to parallelism as quantum speedup. As
an illustration we will go through afew quantum machine learning algorithms, e.g. Quantum Page Rank, and show how a classical parallel computer
can solve these problems faster with the same amount of resources.
Our classical paralelism considerations are especially important for quantum machine learning algorithms, which either use QRAM, allow for
unbounded fanout, or require an all-to-all communication network.
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Racing in parallel: Quantum versus Classical
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Why Quantum Machine Learning?

= Improve figures of merit:
= runtime / complexity
= generalization error
= data efficiency

D PHYS Damlan Steiger | 2

Pirsa: 16080019 Page 3/55



Why Quantum Machine Learning?

= Improve figures of merit:
= runtime / complexity
= generalization error
= data efficiency

= In this talk | will look at quantum algorithms which claim a
speedup
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Contents

= Prerequisite: Fair benchmarking

= All-to-all networks are expensive (Quantum PageRank)
= Matrix-vector multiplication revisited

= Fanout is limited

= QRAM and its implications for speed (Quantum PCA)
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While everyone was looking at Quantum Computers...
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While everyone was looking at Quantum Computers...

= Single core computers are dead

D PHYS Damilan Stelger [ 4

Pirsa: 16080019 Page 7/55



While everyone was looking at Quantum Computers...

= Single core computers are dead
= Benchmark against special purpose parallel computers

DPHYS Domian Staiger
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Fair benchmarking
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“Use eguaf amount gf bardware and compare times”’
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Hardware scaling
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= For a quantum annealer with chimera topology the hardware
scales linearly in the number of spins
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Hardware scaling

= For a quantum annealer with chimera topology the hardware
scales linearly in the number of spins

= Hence also scale classical hardware linearly
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Quantum PageRank
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All-to-all networks are expensive

PRL 108, 230506 (2012) PHYSICAL REVIEW LETTERS 8 JUNE 2012

£

Adiabatic Quantum Algorithm for Search Engine Ranking

" y 1,2,5 - . 2,5 : ¢ 1 234,85
Silvano Garnerone, Paolo Zanardi,” and Daniel A. Lidar

Unstitute Jor Quantum Computing, University of Waterloo, Waterloo, ON N2L 3Gl, Canada
ED('[){HTHH‘HF of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA
‘Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
*Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
SCenter for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA
(Received 25 October 2011; published 4 June 2012)

Prepare PageRank vector in O(log(N)) time
Read out an element in O(N@) time for 0.2 < a <1

Required Hardware: N qubits
O(N?) couplers

Couplers are changed in parallel
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Hardware

Adiabatic Quantum O(N?) Bits
Optimisation O(N) Qubits O(Na) for 0.2 < a <1
(all-to-all connectivity) O(N?) Couplers
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How to compute PageRank classically

= Monte Carlo Simulation
= Power method:
= PageRank vector is eigenvector €y of the stochastic
Google Matrix G with eigenvalue A\g = 1. We know that
all other eigenvalues |\;| < 0.85
= Find €0 with accuracy € by multiplying a random
starting vector — log e times G
= Matrix vector multiplication takes O(N?) time with serial
execution
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Comparing to Classical Hardware

Hardware

O(N?) Bits
O(N) Qubits O(N@) for 0.2 < a <1
O(N?) Couplers

Adiabatic Quantum Optimisation
(all-to-all connectivity)

O(N?) Bits
O(7) Multiplier & O(N?log(N))
Adder

Classical
(Serial using power method)
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Comparing to Classical Hardware

_

O(N?) Bits
Adiabatic Quantum Optimisation (N) Qublts O(Na) for 0.2 < a <1

(all-to-all connectivity) O(N?) Couplers

O(N?) Bits
O(7) Multiplier & O(N4log(N))

Classical
(Serial using power method) e

Unfair comparison as not same amout of hardware
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Matrix-vector multiplication revisited
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matrix element with

Matrix Vector Multiplication multiply & add unit
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matrix element with

Matrix Vector Multiplication multiply & add unit

D PHYS 0 ( 1 ) Damian Stelger AT,

Pirsa: 16080019 Page 20/55



Distribute vector elements
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Distribute vector elements
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Distribute vector elements
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s (1) + O(log(N))
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Multiply local elements

BRICBEBRBAABR”

wwvs O(1) + O(log(N)) + O(1)
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Add rows

B B B BB
-l
m++ ++p++-p+B
- -l
NNl
"B EBEE BB BB
N+ +7g+.+.+.+.
MMM MM MM
orwvs - O(1) + O(log(N)) + O(1)
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Add rows
H-N-N-HH-H-E--E
H:-E-H-E-E-E-E-E
NN
NNl
H-E-E-E-E-E-A-E
NNl
H-E-E-E-E-E- R
M OB MO MMM
orwvs  O(1) + O(log(N)) + O(1)
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Matrix Vector Multiplication

DPHYS 0(1) + O(IOQ(N)) + 0(1) + o(log(N))
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Matrix Vector Multiplication

BB B B B B B FrorNxN dense matrix:

= Hardware:

= Tree structure network
» O(N2) multiply & add units

= Time:
= O(log(N)) ignoring speed
of light
s O(1) + O(log(N)) + O(1) + O(log(N)) =1 1=
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Matrix Vector Multiplication

BB B B B B B rorNxN dense matrix:

= Hardware:

= Tree structure network
» O(N2) multiply & add units

" Time:
= O(log(N)) ignoring speed
of light
ws O(1) + O(log(N)) + O(1) + O(log(N)) =1 1
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Fanout is limited

» Realistic one-to-all broadcast of vector element to matrix
columnin 1D

= Example with 16 elements. Step 1.
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Fanout is limited

» Realistic one-to-all broadcast of vector element to matrix
columnin 1D

= Example with 16 elements. Step 1.
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Fanout is limited

» Realistic one-to-all broadcast of vector element to matrix
columnin 1D

= Example with 16 elements. Step 3:
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
columnin 1D

= Example with 16 elements. Step 4.
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
columnin 1D

= Example with 16 elements. Step 4.
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
columnin 1D

= Example with 16 elements. Step 4.

= Requires O(log(N)) time steps
= Element in first step travels distance O(N). Hence, speed of
light limits the time scaling to O(N)
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Fanout is limited

» Realistic one-to-all broadcast of vector element to matrix
columnin 2D

= Example with 16 elements. Step 1: |
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
columnin 2D

= Example with 16 elements. Step 1: |
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Fanout is limited

» Realistic one-to-all broadcast of vector element to matrix
columnin 2D

= Example with 16 elements. Step 2:

| 30
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
columnin 2D

= Example with 16 elements. Step 3:
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
columnin 2D

= Example with 16 elements. Step 4: H B
W
H N
o N
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
columnin 2D

= Example with 16 elements. Step 4: RN
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Fanout is limited

= Realistic one-to-all broadcast of vector element to matrix
column in 2D

= Example with 16 elements. Step 4: 111

LI
= Requires O(log(N)) time steps

= Element in first step travels distance O(N'/?). Hence, speed
of light limits the time scaling to O(N/2)
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Back to Quantum PageRank

_

Adiabatic Quantum O(N?) Bits
Optimisation O(N) Qubits O(Na) for 0.2 < a <1
Of
O(

(all-to-all connectivity) N?) Couplers

N2) Bits
O(7) Multiplier & O(N?og(N))
Adder

Classical
(Serial using power method)
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Back to Quantum PageRank

_

Adiabatic Quantum
Optimisation
(all-to-all connectivity)

Classical
(tree structure connectivity)

Adiabatic Quantum
Optimisation
(local connectivity)

Gate Model Quantum Computer
(local connectivity)

Classical
(local connectivity)

DPHYS

N?) Bits
N) Qubits
N?) Couplers

N?) Bits
N?) Multiply & Add ©(POIYI0g(N)

N2) Bits
) O(exp(N))

N?) Couplers

N?) Bits
2) Qubits O(Na+173og(N))
2) Gates

N
N
N2) Bits

O(
O
O
O(
O(
O(
O(N?) Qubits
O(
O(
O(
O(
O(
O(N?) Multiply & Add

O(N13)

O(Ne) for 0.2 < a <1
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QRAM and its implications for speed

= Quantum principle component analysis in log(N) time by
Lloyd, Mohseni, Rebentrost (Nature Physics 2014)
Would it work for a general data matrix?
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QRAM and its implications for speed

= Quantum principle component analysis in log(N) time by
Lloyd, Mohseni, Rebentrost (Nature Physics 2014)
Would it work for a general data matrix?

= To prepare log(N) qubits in a density matrix corresponding to
your data matrix O(log(N)) QRAM is needed, which needs
O(N?) hardware to implement.

Ao00-SRAM66(N) qubits
gggg§> ® q
000

N x N classical data

compute principal
components in
log(N) time
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QRAM and its implications for speed

RAM ;
HEEN e |(N) qubits compute principal
21 | %) components in
%%%E log(N) time

N x N classical data
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QRAM and its implications for speed

RAM :
HEEN < |Q(N) qubits compute principal
[ (1) | (o) components in
E%%E log(N) time

N x N classical data

= Classically with O(N?) hardware, matrix vector multiplications
can be done in O(log(N)) time. So given the covariance
matrix, we can use iterative solvers in O(polylog(N))
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QRAM and its implications for speed

RAM :
HEEE < |0(N) qubits compute principal
o [ (R %) components in
%%%E log(N) time

N x N classical data

= Classically with O(N?) hardware, matrix vector multiplications
can be done in O(log(N)) time. So given the covariance
matrix, we can use iterative solvers in O(polylog(N))

= |In O(N) memory we can store the complete wavefunction of
log(N) qubits and with additional O(N?) hardware , we can
emulate the quantum circuit* in O(polylog(N)) time
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QRAM and its implications for speed

RAM :
HEEN < |(N) qubits compute principal
| B O components in
E%E% log(N) time

N x N classical data

= Using O(N?) classical hardware, the exponential speedup
disappears for classical data. However, there might be still
significant energy savings using the quantum version
(depends on implementation of QRAM)

D PHYS
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Summary

= Classical algorithms scale better than Quantum PageRank

= Matrix-vector multiplications in O(log(N)) time with O(N?)
hardware

= Careful analysis needed when using QRAM
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Racing in parallel: Quantum versus Classical
(soon to be published)

Damian Steiger and Matthias Troyer
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