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Abstract: Density functional theory (DFT) is an extremely popular approach to electronic structure problems in both materials science and chemistry
and many other fields. Over the past severa years, often in collaboration with Klaus Mueller at TU Berlin, we have explored using

machine-learning to find the density functionals that must be approximated in DFT calculations. | will summarize our results so far, and report on
two new works.
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Finding density functionals with ML ]

Kieron Burke and friends
UC Irvine Physics & Chemistry

http://dft.uci.edu
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Review of density functional theory (DFT)

ML for finding functionals for box problems
ML for bond breaking
Latest results in 3D and for Ey.

Summary
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The electronic structure problem

Use atomic units

Born-Oppenheimer
approximation

All non-relativistic
(but can be added
back in)

Wavefunctions
antisymmetric and
normalized

Only discuss ground-
state electronic
problem here, but
many variations.

Hamiltonian for N electrons in the presence of external potential v(r):
H=T+ Ve +V,
where the kinetic and elec-elec repulsion energies are

N il i |
T =aN 2] FASFE A ST 0
2.2‘ i Q.Z‘le','—rﬂ
i=1 i=1 ji
and difference between systems is N and the one-body potential
A N
V= L V(l‘,‘)
i=1
Often v(r) is electron-nucleus attraction
! Z(\
r)=— .
V( ) L |l’ ) Rul

oy

where «v runs over all nuclei, plus weak applied E and B fields.

{(T+ Ve + VIV =EV, E = min(V|T + Vee + V|V)

Perimeter Institute
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HK theorem (1964)

« Makes TF an
approximation to

© Rewrite variational principle (Levy 79):
an exact theory

E = min(V|T + Ve + V|W)

« Can find both ‘” ‘
ground-state = min {F[”] + [ d*r "(')”(’)}
density and g
energy via Euler Firl = min(W|F + U ¥)
equation ar

» The minimum is taken over all positive n(r) such that [ d*r n(r) = N

@ The external potential v(r) and the hamiltonian H are determined to
within an additive constant by n(r)

@ P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964)

@ M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS DFT method (1965)

1964: HK theorem: There exists F[n] ‘ .

Define fictitious non-interacting electrons satisfying: } n(r)

1 L
{~ §V2 + v_q(r)} dj(r) = €;d;(r), L |r/)j(r)\2 = n(r). 1
j=1

where vs(r) is defined to yield n(r).

Define Ty as the kinetic energy of the KS electrons, U as their o
Hartree energy and

F=T + Vee = Ts + U + Exc 2

the remainder is the exchange-correlation energy.

Most important result of exact DFT: ak.

fsEx('

vs(r) = v(r) + / d3r-|r”(_r r),|- Fulol(e), () = 505

Knowing Exc[n] gives closed set of self-consistent equations.

Aug 11, 2016 Perimeter Institute
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[ Today’s commonly-used functionals J

* Local density approximation (LDA) = ptosp) - 4, [ ()
— Uses only n(r) at a point. A e
* Generalized gradient approx -
"GGA i (35,,(,("'("::\ n(r). nir
(GGA) BISA = [ eSS m(r), V(o))
— Uses both n(r) and IVn(r)l

— Should be more accurate, corrects
overbinding of LDA

— Examples are PBE and BLYP
* Hybrid: EXYP = a(Bx — By %) + Egg®

— Mixes some fraction of HF with GGA
— Examples are B3LYP and PBEO

Aug 11, 2016 Perimeter Institute
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Importance of DFT }
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[ Importance of DFT J

* Spans many fields: chemistry, materials science,
condensed-matter physics,..

Aug 11, 2( ) Perimeter Institute
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Importance of DFT J

* Spans many fields: chemistry, materials science,
condensed-matter physics,..

* Gigo principle: Results only as good as Ey¢[n]
approximation used.
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[ Importance of DFT J

* Spans many fields: chemistry, materials science,
condensed-matter physics,..

* Gigo principle: Results only as good as Ey¢[n]
approximation used.

* Much faster than wavefunction/green'’s function
methods for large systems.
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[ Importance of DFT J

* Spans many fields: chemistry, materials science,
condensed-matter physics,..

* Gigo principle: Results only as good as Ey¢[n]
approximation used.

* Much faster than wavefunction/green'’s function
methods for large systems.

* Never fast enough for e.g., biomolecular MD
simulations.
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* Spans many fields: chemistry, materials science,
condensed-matter physics,..

* Gigo principle: Results only as good as Ey¢[n]
approximation used.

« Much faster than wavefunction/green'’s function
methods for large systems.

* Never fast enough for e.g., biomolecular MD
simulations.

« Often inaccurate for strongly correlated systems,
including many energy-related materials.
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Importance of DFT }

* Spans many fields: chemistry, materials science,
condensed-matter physics,..

* Gigo principle: Results only as good as Ey¢[n]
approximation used.

« Much faster than wavefunction/green'’s function
methods for large systems.

* Never fast enough for e.g., biomolecular MD
simulations.

« Often inaccurate for strongly correlated systems,
including many energy-related materials.

 Catalysts found by DFT being patented and used.
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Importance of DFT

Spans many fields: chemistry, materials science,
condensed-matter physics,..

Gigo principle: Results only as good as Eyc[n]
approximation used.

Much faster than wavefunction/green’s function
methods for large systems.

Never fast enough for e.g., biomolecular MD
simulations.

Often inaccurate for strongly correlated systems,
including many energy-related materials.

Catalysts found by DFT being patented and used.

Hi'_glb pressure 200K superconductors predicted from
DFT calculations.

Aug 11, 2016 Perimeter Institute

Page 15/60



Pirsa: 16080014

Importance of DFT

Spans many fields: chemistry, materials science,
condensed-matter physics,..

Gigo principle: Results only as good as Eyc[n]
approximation used.

Much faster than wavefunction/green’s function
methods for large systems.

Never fast enough for e.g., biomolecular MD
simulations.

Often inaccurate for strongly correlated systems,
including many energy-related materials.

Catalysts found by DFT being patented and used.

Hti!lb pressure 200K superconductors predicted from
DFT calculations.

Last year, 30,000 scientific papers published using DFT.

DFT: A Theory Full of Holes, Aurora Pribram-Jones, David A. Gross, Kieron Burke,

Annual Review of Physical Chemistry (2014).
3y e
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[ Axel Becke: 2016 Killam Prize in Natural Sciences J

Courtesy of NSERC

Aug 11, 2016 Perimeter Institute
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[ Systematic approach to DFT J

* Lieb and Simon proved TF is leading order in
an unusual semiclassical limit.

* For atoms, this is same as keeping neutral and
taking N to infinity.

« With collaborators, | have shown LDA is leading
term in same limit.

* In model cases, can find leading corrections,
which are uniform asymptotic expansions in
hbar and far more accurate than present-day
DFT approximations.

Aug 11, 2016 Perimeter Institute
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. Orbital-freeDFT |

* Long-time dream of electronic structure

« If you know T[n] sufficiently accurately, you
avoid computational cost of solving KS
equations.

* Like TF, only accurate enough for prediction.
* Go from hundreds to millions of atoms
» See work by Emily Carter and Sam Trickey

* Also, extremely important in plasma physics
simulations at million K scale

Aug 11, 2016 Perimeter Institute
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Strong correlation: Where DFT fails

« Ongoing project with Steve White at UCI
* Apply DMRG to continuum problems

 Understand limitations and failures of standard
DFT approximations

t,

E »

homas E. Baker Lucas Wagner Miles Stoudenmire Steve White

Aug 11, 2016 Perimeter Institute
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B. Machine learning- demo
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[ ML applications in electronic structure }

* Most with Klaus Mueller of TU Berlin,
computer science.

Aug 11, 2016 Perimeter Institute
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[ ML applications in electronic structure J

 Most with Klaus Mueller of TU Berlin,
computer science.

* ML now being applied directly to, e.g.,
molecular energies from geometries for
drug design, many by Matthias Rupp (FHI
Berlin).
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[ ML applications in electronic structure J

 Most with Klaus Mueller of TU Berlin, |
computer science. l “6

ﬁ /

* ML now being applied directly to, e.g.,
molecular energies from geometries for
drug design, many by Matthias Rupp (FHI
Berlin).

* Our efforts are focused on finding T,[n]

from examples, work by John Snyder
(Humboldt fellow at TU Berlin/MPI Halle)

Aug 11, 2016 Perimeter Institute
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[ Demo problem in DFT J

® N non-interacting same-spin fermions confined to |d box

® Define class of potential:
3
v(z) = — Z a; exp(—(z — b;)%/(2¢?))

1=1

® Represent the density on a grid with spacing Az = 1/(G — 1)

e ML-DFA for KE:

M
T(n) : ;T’Z(rljlar(n_.}-,n)
J=1

Aug 11, 2016 Perimeter Institute
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Dataset

Generate 2000 potentials. Solve for up to 4 electrons.

4
T | =
2
0 0
0 0.5 1 0 0.5 1
0 X ” X
® -5. =
-10.
0 0.5 1 0

0.5 |

Perimeter Institute
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Performance for T,

N M A o AT R ATy [BECR AGT [A
A0RRTAS ST REARO SRS 3t] 3.0 23.
60 1.0x10"° 95 1.2 1.2 10.
: SORRGHTE S () RSN SR ()7 S . () 154 Al
o[ &elszalm k) @l - @y 3.2
150 2.5x 1077 33 0.060 0.10 1.3
POORIN7E ] DR SRR OO TR )1 053 0.65
2] DORNIFS E<810 U 5 0N () N3 I ()120) 1.8
SR ORI PCST 0 R 74 S () N 2B (ON]'3 1.8
AR () RTS8 () B B ()10 7 S S (K1 2.3
[RATRNA() ()BTRS BB () B4 78 () 1.2 0.20 3.6

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kecal/mol
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functional derivative?

* Functionals are
defined on infinite-

Exact ML-DFA dimensional spaces
01 [n| < ) 1 v.F MA - v
{)_“(‘r) = i — v(x 2 N (n) rZTu,(n_j--u).(n_,.n) . q
of = a;/(0?Ax) G Wlth f|n|te

interpolation, can

150
i always find bad
die directions
O () e e
> \
' 75 : + Can we make a
cruder definition
o that will work for

our purposes?
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[ Principal component analysis J

1 ;
X = (nj, —n,...,n;, —n)" H
: n n,;
1 71 73
O =505 e
m /11\
I n;, nj,
A,' X | . =
il A N
\ N=3
\ N=4
\ > X\
L\
A\,
0 AN
3) e BN
I 'In,ﬁ(n) =V'V ()i ' Q':' U -
V:(XI....,X(*)T J
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[ Projected functional derivative J

4, ' ‘

-

~

_Pm.(’ (H)Vn T(n)/Ax
A

I
o0
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[ Constrained optimized density J

® Gradient descent search:

nli+l) — nG) _ f‘P,,,\}g(n(f"))(v . Vn’f‘(n(j))/A:z:)

INf — 1l 3

M = 100 13X 10°

1 AT; = 0.154 kecal/mol
{ AT} = 6.53 kcal/mol

nx)

Ratio = 43

Aug 11, 2016 Perimeter Institute
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Bond-breaking with ML

» Standard T,[n]
approximations like TF

go bad when bonds
break.

* Performed many 1d KS
calculations of
diatomics as function
of bond length, using
LDA with soft-

LiH

=== R=0 ]

Coulomb repulsion,
including several with

m o re t h a n 2 e I ect ro n s Orbital-free Bond Breaking via Machine Learning John C. Snyder,

Matthias Rupp, Katja Hansen, Leo Blooston, Klaus-Robert Miiller,
Kieron Burke, J. Chem. Phys. 139, 224104 (2013)

Aug 11, 2016 Perimeter Institute
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Constrained optimal density

« Convergence of
constrained optimal
density with # of
training points.

Kernels, Pre-Images and Optimization John Snyder, Sebastian
Mika, Kieron Burke, Klaus-Robert Miiller, Chapter in Empirical
Inference - Festschrift in Honor of Vladimir N. Vapnik (2013)

0.02

0.0

-5 0 5

r

n(zx)—n(x)

IFIG. 7. Difference between the constrained optimal density
n(xz) and the KS density n(z) for various numbers of training
densities Np. The error decreases uniformly for all . The
system is Ha at equilibrinm bond length. The inset shows the
IKS density.
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[ Bond-breaking with ML

« Standard T,[n]
approximations like TF

go bad when bonds
break.

* Performed many 1d KS
calculations of
diatomics as function
of bond length, using
LDA with soft-
Coulomb repulsion,
including several with
more th an 2 eleCtron S Orbital-free Bond Breaking via Machine Learning John C. Snyder,

Matthias Rupp, Katja Hansen, Leo Blooston, Klaus-Robert Miiller,
Kieron Burke, J. Chem. Phys. 139, 224104 (2013)

n(x)
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Constrained optimal density

« Convergence of
constrained optimal
density with # of o
training points.

0.0

-5 0 5

n(zx)—n(x)

Kernels, Pre-Images and Optimization John Snyder, Sebastian r

Mika, Kieron Burke, Klaus-Robert Miiller, Chapter in Empirical

Inference - Festschrift in Honor of Vladimir N. Vapnik (2013) I'IG. 7. Difference between the constrained optimal density
n(x) and the KS density n(z) for various numbers of training
densities Np. The error decreases uniformly for all . The
system is Ha at equilibrium bond length. The inset shows the
IKS density.
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Types of errors in DFT ]

* AE = E, [n]-E,[n]
* AEp = E, [A]-E[n]
* AE = AEg+ AEj
 Error analysis of
energies in kcal/mol
as a function of R :
with different e LHOHRUNL AR
numbers of training
data, on constrained TR
optimal densities P el b gl

(h) li!l‘ training densities.

Aug 11, 2016 Perimeter Institute
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[ Functional derivatives and densities J

« How can we get accurate densities from lousy
derivatives?

* Once solution density is within interpolation manifold,
simply constrain derivative to stay on that manifold

* Analogy:
— Problem: find global minimum of 2D surface, given exact data
along a 1D curve in that surface that passes through the
minimum.

— Solution: Make sure you stay on the path.
PS: Inspired density-corrected DFT, which corrects
many self-interaction errors!

Understanding and reducing errors in density 1
" . - - T lens in solution: Density corrected density n

functional calculations Min-Cheol Kim, Eunji functional theory (DC-DFT) Min-Cheol Kim, Eunji < :

Sim, Kieron Burke, Phys. Rev. Lett. 111, Sim, Kieron Burke, The Journal of Chemical Physics “ X

073003 (2013). 140, 18A528 (2014)

Aug 11, 2016 Perimeter Institute
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Road map back to reality J

.
A . . . . . . .
+ dimensionality, basis sets, representation, inversion symmetry

X
3d atoms, diatomics .
«_full symmetries, scaling ¢ _ I l 4-
(& éﬂwolecules WG,

scalability, data accumuhnon — —_—

ab-initio MD, active learnin
ikl s et g<arge systems real appllcatlorD

Aug 11, 2016 Perimeter Institute
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D. Recent results

 Either submitted or about to be.

o b

Felix Brockherde Li Li Téh‘bmas E. Baker

Aug 11, 2016 Perimeter Institute
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e |

* By-passing the KS equations with ML
— Felix Brockherde, Li Li, Klaus Muller, KB
— Avoids functional derivative
— Applied in 3D
— Still doing KS problem, T;[n]

* Pure Density Functional for Strong Correlations
and the Thermodynamic Limit Using Machine
Learning
— Li Li, Thomas E. Baker, Steven R. White and KB
— Do interacting functional (ie. Exact Exc)

— Do strong correlation

— Do thermodynamic limit
— Still in 1d

Aug 11, 2016 Perimeter Institute
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[ By-passing KS |

97 ] ,
[t‘ 3 ) =0 till convergence

on(r) J > \J
Euler equation , "o Density
e
A 7 QQ @)
o) =
N //\\® < =2
\N' ;N o | D
NN O |n
/o O.| =
/ (50 > @
RN @|o
/ Q}Q’ ’6
" E[n] |2
/\2‘6(\ \
Q Ev) E
&  Kohn-Sham (KS) Mapping v
Potential Total Energy
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[ Convergence of different HK maps J

| | | | | [ | [
10" 90 Or E
2 ' BB HK Grid |
g V= HK Fourier |-
TS 10° ¢ ¢ HK KPCA [
4 1 '
— R
LS L
i)

< $ - 0

| | | _’_— T 8 I—

20 40 60 80 100 120 140 160 180 200
Number of training points M
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Non-interacting HK map }

8D Q.

b
i

W S "
Potential Potential as Independent Data-driven and physicaly  Density
Gaussian blobs ML models motivated basis represen-

tations
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Error for H,
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[ ML of exact functionals J

* Use DMRG to solve continuum problems in 1d.

* Much success inlpast, showing failures of DFT
approximations for strong correlation.

* Here use DMRG to generate much data of exact
densities and energies

+ All restricted to 1d.

* We train and test a machine learning F[n], the universal
part of the electronic density functional, to within
Euantum chemical accuracy. We (a) bypass the standard

ohn-Sham approach, (b) include the strong correlation
of highly-stretched bonds and (c) create a model for the
infinite chain limit.

Guaranteed Convergence of the Kohn-Sham Equations
Lucas O. Wagner, E. M. Stoudenmire, Kieron Burke, Steven
R. White, Phys. Rev. Lett. 111, 093003 (2013).

One-Dimensional Continuum Electronic Structure with the
Density-Matrix Renormalization Group and Its Implication
for Density-Functional Theory E.M. Stoudenmire, Lucas O.
Wagner, Steven R. White, Kieron Burke, Phys. Rev. Lett.

+ 109, 056402 (2012).
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Convergence for H,

-800
>
=
=
© -850
LN
LT:
)

-900

1 3 5 7
R (Bohr)

FIG. 3. (Color online) Same as Fig. 2. The green curves
are ML with Np = 5 on both the exact (dashed) and ML-
optimized (solid) densities.

Nt = 20.

Red curves are the same with

Perimeter Institute
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Densities

R=4.6
ML5

il — e

-= DMRG
0.3
E 0.2
0.1
0.0

-8 -6 =4 -2 0 2 4 6 8

FIG. 4. (Color online) Optimal densities for 1d Hs molecule
in the test set: DMRG (black), ML with Ny = 5 (orange),
ML with Nt = 20 (red).
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Chains

0.4} | |
0.3} :
.
e 0.2t :
0.1
00 ; . \
-15 -10 =5 0 5 10 1115

X

FIG. 5. Partition density of each H atom in Hs.
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[ PCA basis for atomic densities J

s TR P TS P, 1B, [ T B
14
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Improved convergence from basis
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FIG. 9. (Color online) Electronic energy per atom in the
thermodynamic limit, both via DMRG chains (extrapolated
to infinity) and using machine learning with 50 data points

per chain.
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Convergence for infinite chain J
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« ML of functionals works in model cases to produce highly accurate
approximate functionals
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« ML of functionals works in model cases to produce highly accurate
approximate functionals

+ Totally different approach from anything in DFT before
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Summary

|

ML of functionals works in model cases to produce highly accurate

approximate functionals
Totally different approach from anything in DFT before

ML can even

— find accurate densities
— say when it will work within tolerance (makes Klaus nervous)

— break bonds
— Do the full functional
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approximate functionals
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* ML can even
— find accurate densities
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— break bonds
— Do the full functional

 But
— only demonstrated in 1d
— Need to do arbitrary-sized system (representation question)
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Summary j

« ML of functionals works in model cases to produce highly accurate
approximate functionals

+ Totally different approach from anything in DFT before
* ML can even

— find accurate densities

— say when it will work within tolerance (makes Klaus nervous)

— break bonds

— Do the full functional
e But

— only demonstrated in 1d

— Need to do arbitrary-sized system (representation question)
* Ongoing projects:

— ML exact interacting functional in thermodynamic limit

— Full 3D calculation of water molecule, using ML for n[v](r)
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Summary

J

ML of functionals works in model cases to produce highly accurate
approximate functionals

Totally different approach from anything in DFT before

ML can even
— find accurate densities
— say when it will work within tolerance (makes Klaus nervous)

— break bonds
— Do the full functional

But

— only demonstrated in 1d

— Need to do arbitrary-sized system (representation question)
Ongoing projects:

— ML exact interacting functional in thermodynamic limit

— Full 3D calculation of water molecule, using ML for n[v](r)
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