Title: A quantum-assisted algorithm for sampling applications in machine learning.
Date: Aug 10, 2016 11:45 AM
URL: http://pirsa.org/16080012

Abstract: An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact in deep learning and other
machine learning applications. Recently, quantum annealers have been proposed as a potential candidate to speed up this task, but several
limitations still bar these state-of-the-art technologies from being used effectively. One of the main limitations is that, while the device may indeed
sample from a Boltzmann-like distribution, quantum dynamical arguments suggests it will do so with an instance-dependent effective temperature,
different from the physical temperature of the device. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a
guantum annealer for Boltzmann sampling. In this talk, we present a strategy to overcome this challenge with a smple effective-temperature
estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the learning of a kind of restricted
Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep learning architectures. We also provide a
comparison to k-step contrastive divergence (CD-k) with k up to 100. Although assuming a suitable fixed effective temperature also allows to
outperform one step contrastive divergence (CD-1), only when using an instance-dependent effective temperature we find a performance close to
that of CD-100 for the case studied here. We discuss generalizations of the algorithm to other more expressive generative models, beyond restricted
Boltzmann machines.
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Unsupervised learning (generative models)

Example application:
Image reconstruction

Reconstructed
image

LEARNED MODEL
P ( Image )

*

Damaged
image
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Unsupervised learning (generative models)

Learn the “best” model distribution that Example application:
can generate the same kind of data. Image reconstruction
MODEL
P (Image ) Reconstructed
: image
Learning
algorithm LEARNED MODEL
P ( Image )
NO LABELS
— Damaged
] \ | image
DATASET 3

Pirsa: 16080012 Page 4/46



@

Supervised learning (discriminative models)

Learn the “best” model that can Example application:
perform a specific task Image recognition
Predicted
MODEL label
P ( Label | Image ) 61
Learning "
clelelylily LEARNED MODEL
ik P (Label | Image )
26624
Image to be

recognized
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Outline

*Why is it hard and interesting to sample from a Boltzmann distribution? Why, in principle, is it
possible to do classical Gibbs sampling with a quantum annealer?
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Outline

*Why is it hard and interesting to sample from a Boltzmann distribution? Why, in principle, is it
possible to do classical Gibbs sampling with a quantum annealer?
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*How to do it experimentally? Results on our quantum-assisted learning (QuALe) algorithm for
sampling applications. Feasibility question.
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Outline

*Why is it hard and interesting to sample from a Boltzmann distribution? Why, in principle, is it
possible to do classical Gibbs sampling with a quantum annealer?
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*How to do it experimentally? Results on our quantum-assisted learning (QuALe) algorithm for
sampling applications. Feasibility question.

Benedetti et al. PRA, 94, 022308
(arXiv:1510.07611).
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* Overcoming the “curse of limited connectivity” in hardware. How to work with general probabilistic
graphical models beyond RBM? How to cope with noisy devices and future directions.
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Unsupervised learning relies on sampling

“Unsupervised learning [... has] been overshadowed by the successes of
purely supervised learning. [... We] expect unsupervised learning to
become far more important in the longer term. Human and animal learning
is largely unsupervised: we discover the structure of the world by observing it,
not by being told the name of every object.”

LeCun, Bengio, Hinton, Deep Learning, Nature 2015

“In the context of the deep learning approach to undirected modeling, it is rare
to use any approach other than Gibbs sampling. Improved sampling
techniques are one possible research frontier.”

Goodfellow, Bengio, Courville, Deep Learning, book in preparation for MIT Press, 2016

“Most of the previous work in generative models has focused on variants of
Boltzmann Machines [...] While these models are very powerful, each
iteration of training requires a computationally costly step of MCMC to
approximate derivatives of an intractable partition function (normalization
constant), making it difficult to scale them to large datasets.”

Mansimov, Parisotto, Ba, Salakhutdinov, under review for ICLR 2016
6
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Restricted Boltzmann Machines and Beyond @

feature mapping

learned features

T

hidden units

activation of
hidden units

__________

sample

RBM’s:

n m m n
E(V,h):-— E E W.‘jh,‘Vj— E ijj_ Z thj

i=1)=1 j=1 i=1
such that
p(h|v) = _[I1 p(hilv) and p(vih) = ,[Il p(vylh).

im j=
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Restricted Boltzmann Machines and Beyond
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Foundational Theory of Quantum Annealing @

Simulated Annealing
(Kirkpatrick et al., 1983)

Algorithm: Start with a high temperature. Slowly
reduce the intensity of these thermal fluctuations
aiming for low cost configs..

Transitions between states are over the barrier and
due to thermal fluctuation

E({z})

N q

E({z})

Temperature

> Time
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Foundational Theory of Quantum Annealing *

Simulated Annealing
(Kirkpatrick et al., 1983)

Algorithm: Start with a high temperature. Slowly
reduce the intensity of these thermal fluctuations
aiming for low cost configs..

Transitions between states are over the barrier and
due to thermal fluctuation

E({z})

N q

E({z})

Temperature

> Time
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Simulated Annealing
(Kirkpatrick et al., 1983)

«  Algorithm: Start with a high temperature. Slowly
reduce the intensity of these thermal fluctuations
aiming for low cost configs..

* Transitions between states are over the barrier and
due to thermal fluctuation

E({z})

N q

E({z})

Temperature
= ==

> Time
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Foundational Theory of Quantum Annealing *

Quantum Annealing
(Finnila et al., 1994, Kadawaki and Nishimori, 1998, Farhi et.al., 2001)

14
* Algorithm: Start with large amplitude
ﬁu A(T) responsible for quantum
E 10 fluctuations. Then, slowly turn it off
0] 8 while turning on the cost function
3 amplitude, B(T).
5 6 « Transitions between states due to
I.Ii 4 quantum fluctuations (tunneling)
2
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R R,
Time, T
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Foundational Theory of Quantum Annealing @

Simulated Annealing
(Kirkpatrick et al., 1983)

Algorithm: Start with a high temperature. Slowly
reduce the intensity of these thermal fluctuations
aiming for low cost configs..

Transitions between states are over the barrier and
due to thermal fluctuation

E({z})

N q

E({z})

Temperature
=

> Time

Quantum Annealing
(Finnila et al., 1994, Kadawaki and Nishimori, 1998, Farhi et.al., 2001)

14
= Algorithm: Start with large amplitude
ﬁu A(T) responsible for quantum
E 10 fluctuations. Then, slowly turn it off
0] 8 while turning on the cost function
- amplitude, B(T).
% 6 * Transitions between states due to
c 4 quantum fluctuations (tunneling)
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— {2} XBEg(z} (2

initialize in an easy to  quantum states Final states: bit strings
prepare full quantum  explored by quantum encoding the solution.
superpaosition tunneling
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Foundational Theory of Quantum Annealing *J

Simulated Annealing
(Kirkpatrick et al., 1983)

Algorithm: Start with a high temperature. Slowly
reduce the intensity of these thermal fluctuations
aiming for low cost configs..

Transitions between states are over the barrier and
due to thermal fluctuation

E({z})

N q

N E({z})

Temperature

> Time

Quantum Annealing
(Finnila et al., 1994, Kadawaki and Nishimori, 1998, Farhi et.al., 2001)
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D-Wave System Capability

1) As a discrete optimization solver:

Given{ h;, J;; }, find {5}, = £1 } NP-hard
that minimizes problem

E(Sq, ) Sy) = Zh S; + Z]”S Sj
j=1

i,jJEE

Potential NASA applications:
planning, scheduling, fault
diagnosis, graph analysis,
communication networks, etc.

Also, quantum ML work by Google/DW.

QUBO: Quadratic Unconstrained
Binary Optimization
(Ising model in physics jargon).

&
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D-Wave System Capability

1) As a discrete optimization solver:

Given{ h;, J; }, find{s;, = +1 } NP-hard
that minimizes problem

N N
E(S1, ) SN) = Z h;s;j + Z JijSiS;
j=1

ijEE

Potential NASA applications:
planning, scheduling, fault
diagnosis, graph analysis,
communication networks, etc.

Also, quantum ML work by Google/DW.

QUBO: Quadratic Unconstrained
Binary Optimization
(Ising model in physics jargon).

2) As a physical device to sample from Boltzmann distribution:

P Boltzmann & eXp [_g(S] A SN ) / Tgﬁ]

Potential NASA applications in
machine leaning (e.g., training
of deep-learning networks)
Early work:
Bian et al. 2010. The Ising model: teaching an old problem new tricks.

&
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D-Wave System Capability

1) As a discrete optimization solver:

. . _ Potential NASA applications:
Given { h;, J;j }, find {s5) = +1 } NP-hard planning, scheduling, fault

that minimizes problem diagnosis, graph analysis,
communication networks, etc.

Also, quantum ML work by Google/DW.

QUBO: Quadratic Unconstrained
Binary Optimization
(Ising model in physics jargon).

2) As a physical device to sample from Boltzmann distribution:

P Boltzmann X eXp [_g(S] A SN ) / Tgﬁ]

Computationally Widely used in
bottleneck unsupervised
learning
Potential NASA applications in > (v h )
machine leaning (e.g., training i'j/p(h,v)

of deep-learning networks)
Our recent work: Benedetti et al. PRA, 94, 022308 (2015)

+ We provide a robust algorithm to estimate the effective temperature of
problem instances in quantum annealers.

Early work:
Bian et al. 2010. The Ising model: teaching an old problem new tricks.

+ Algorithm uses the same samples that will be used for the
estimation of the gradient
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Why sampling from classical Gibbs?

2) As a physical device to sample from Boltzmann distribution:

PBotzmann O(CXP[ g( a'--aSN)/Z?ﬁ]

Potential NASA applications in
machine leaning (e.g., training
of deep-learning networks)
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Why sampling from classical Gibbs?

2) As a physical device to sample from Boltzmann distribution:

PBotzmann O(exp[ g( a'--aSN)/Z?ﬁ]

Potential NASA applications in
machine leaning (e.g., training
of deep-learning networks)
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D-Wave System Capability

1) As a discrete optimization solver:

. . _ Potential NASA applications:
Given { h;, J;j } find {s5) = +1 } NP-hard planning, scheduling, fault
that minimizes problem diagnosis, graph analysis,
communication networks, etc.

Also, quantum ML work by Google/DW.

QUBO: Quadratic Unconstrained
Binary Optimization
(Ising model in physics jargon).

2) As a physical device to sample from Boltzmann distribution:

PB()’IZ»'?TCUW X exp[_g(sl 22 SN ) / Teﬁ] Computationally. “ Widely used in

bottleneck unsupervised
learning

Potential NASA applications in — i -
machine leaning (e.g., training ‘(vl h_] )p(h,v) ‘

of deep-learning networks)
Our recent work: Benedetti et al. PRA, 94, 022308 (2015)

Early work: ;i ) : .
Bian et al. 2010. The Ising model: teaching an old problem new tricks. v We prowﬁe a robur_,t algorithm to estimate the effective temperature of
problem instances in quantum annealers.
:ecent :jvo:k:l 2016. Global ina: T t timation | + Algorithm uses the same samples that will be used for the
aymond et al. . Global warming: Temperature estimation in estimation of the gradient

annealers.
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Quantum-Assisted Learning Vs. Contrastive Divergence

Bars and Stripes dataset

HEEE (L] N/
HEEE B =N
EEEEN W |
EEEE B EEm

| (. | [ | |

L] WeEn

Fisher and Igel. Pattern Recognition, 47, 25 (2014)

Embedding on the D-Wave 2X
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Quantum-Assisted Learning Vs. Contrastive Divergence

Bars and Stripes dataset
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Non-trivial and correlated variations in the temperature
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Added features: Restart from CD-k

CD-1
- = QuALe with restart @ 250
QuALe @ 7' = 0.033 with restart @ 250

100 200 300 400 500
1teration

Benedetti et al. PRA, 94, 022308

Pirsa: 16080012 Page 26/46



(R | \

n HT\t NS

- [ewra

A
AR\N(@) \)L\\A\ I/

\

Pirsa: 16080012 Page 27/46




&

Comparison with pseudo-likelihood
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Quantum-assisted unsupervised learning on digits

Overcoming the curse of limited connectivity

0
—
A 3 5 3
2\ 1 j\/ 6
7 logical (visible) variables N AR\
""‘,. A 0 ,ill.. \.‘."'._ A
2 ] 2

18 physical qubits
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Quantum-assisted unsupervised learning on digits
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Quantum-assisted unsupervised learning on digits

Overcoming the curse of limited connectivity
in physical devices.

42 fully-connected
logical (visible) variables

How do we train this 794 qubit problem?
(How do we analyze the (Gibbs) samples
from this physical model?

Immediate solution: Keep an eye on a paper coming out
with a new gray-model approach for training noisy QA.

Benedetti et al. In preparation.
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Quantum-assisted unsupervised learning on digits

OptDigits Datasets
16

14
12

32x32 —»

T
o N B OV 0

8x8 7Xx6 7X6, binarized

Dataset: Optical Recognition of Handwritten Digits (OptDigits)
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Quantum-assisted unsupervised learning on digits

OptDigits Datasets

16 16 - 16 - 16

14 14 14 14

12 12 12 12

10 10 10 10
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2 2 2 2
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Dataset: Optical Recognition of Handwritten Digits (OptDigits)
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Quantum-assisted unsupervised learning on digits
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Dataset: Optical Recognition of Handwritten Digits (OptDigits)
Benedetti et al. In preparation.
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Quantum-assisted unsupervised learning on digits
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original corrupted After 1 After 100
learning iter. learning iters.

Experimental realization of quantum-assisted learning algorithm
on 794 qubits, for a 42 fully-connected model.

Fully unsupervised learning and generative model on a digit.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Benedetti et al. In preparation.
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Quantum-assisted unsupervised learning on digits
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+ Experimental realization of quantum-assisted learning algorithm

on 794 qubits, for a 42 fully-connected model.

* Fully unsupervised learning and generative model on a digit.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Benedetti et al. In preparation.
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Quantum-assisted unsupervised learning on digits
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Quantum-assisted unsupervised learning on digits
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Quantum-assisted unsupervised learning on digits

Human or (quantum) machine? (Turing test)
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Benedetti et al. In preparation.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)
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Quantum-assisted unsupervised learning on digits

Human or (quantum) machine? (Turing test)
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+ Experimental realization of quantum-assisted learning algorithm
on 917 qubits, for a 46 fully-connected model.

Dataset: Optical Recognition of Handwritten Digits (OptDigits)

Benedetti et al. In preparation.
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Quantum-assisted unsupervised: artificial model
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Reference model: Ising spin
glass with 20 fully-connected
spins (10 instances).
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Benedetti et al. In preparation.
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Quantum-assisted unsupervised: artificial model
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glass with 20 fully-connected
spins (10 instances).
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Benedetti et al. In preparation.
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Reference model: Ising spin
glass with 20 fully-connected
spins (10 instances).
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Quantum-assisted unsupervised: artificial model
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Benedetti et al. In preparation.
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Ongoing research directions

Possible further boosting protocols by considering models to account explicitly for the noise
in the quantum device.
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Numerical simulations show that main
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limitation of current quantum annealers for
Boltzmann machines applications is its sparse
| connectivity.

General BMs
Extensions to deep learning architectures.

How “Boltzmannian” need the samples to be for

QuALE to work Deep architectures
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quantum computing technologies.
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Ongoing research directions

Possible further boosting protocols by considering models to account explicitly for the noise
in the quantum device.
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Numerical simulations show that main

limitation of current quantum annealers for

Boltzmann machines applications is its sparse
| connectivity.

General BMs
Extensions to deep learning architectures.

How “Boltzmannian” need the samples to be for

QuALE to work Deep architectures

Inference by using quantum distributions, such as those coming from future generation
quantum computing technologies.

i Is quantum tunneling, or any other quantum computational resource, relevant for machine
' learning/sampling applications? Can it be any faster than MCMC? Is it possible to achieve
' quantum supremacy in this domain?
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