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Supervised Training

a. Regression

b. Classification
Unsupervised Training
a. Clustering

b. Density Estimation
c. Dimensionality Reduction

Reinforcement Learning
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Key ingredients in Machine Learning

Lots of data

Flexible model

Computing power

Defeat the curse of dimensionality

Disentangling the underlying factors of the data (making
sense of the data)
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Representation Learning
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e Good features — better Machine Learning

e Hand crafted v/s Learned features

e (Good Representation: captures posterior belief about
explanatory causes, disentangle the factors of variation

o Representation learning : Guesses the
features/factors/causes = good representation of the
observed data.

Pirsa: 16080011 Page 4/34

R




eep Learning overview.pdf

[SU 140.37% v R

How to compose the hidden features
Fighting against: Curse of dimensionality

variations
e Classical approach: Hope for a smooth enough target function, or

)

)

=

[i] e To generalize locally: need representative example of all relevant
=

g make it smooth by handcrafting good features.
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Bypassing the curse
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e \We need to build compositionality into the ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

e Exploiting compositionality gives an exponential gain in
representation power.

Prior : Compositionality is useful to describe the world around
us efficiently.
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Non-distributed representations

e Clustering, Nearest-Neighbors,
decision trees, etc.

e Parameters for each X
distinguishable region.

e # of distinguishable region is
linear in terms of parameters.

ELEEYFE

regions
delined

by leamed
prototypes

No non trivial generalization to
regions without examples!!

LOCAL PARTITION

Pirsa: 16080011 Page 7/34

R

¥



Deep Learning overview.pdf

The need for distributed representations

== PCALRBM:S} NoUraliNetworks g i it v imaeasion seat b e B aias e i 8 r it St it ,
\ . ! :
Deep Learning etc. ;
Each parameter influences many : Sub-partitiond ..
: : _ : % Sub-partition 2 :
regions not just local regions. : X !
. i Cl=I "' /
- Learning a set of features that are ! G X/
not mutually exclusive can be : X

Sub=partition |

CELREELIEE

exponentially more statistically .
efficient than having clustering like !
models.

GENERALIZE NON LOCALLY TO / \
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Analogical Representations for Free

e Semantic relations appear as linear
relationships in the space of learned
representations.
e King — Queen = Man — Woman
Paris - France + Italy = Rome

b=

ELEEYFE

WOMAN

/ O QUEENS
MAN /

bk KINGS \
QUEEN \ QUEEN

KING KING

(Mikolov et al., NAACL HLT, 2013)

Pirsa: 16080011 Page 9/34



(‘@pA. ] .
B Geometrical view on machine learning

e Generalization: Guessing where probability mass

[i] concentrates.

E e Challenge: The curse of dimensionality (exponentially

& many configurations of the variables to consider)
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irsa: 16080011 Page 11/34



Deep Learning overview.pdf

P

ELEEYIEE

Pirsa: 16080011

1l

Learning representations

Handcrafting features is time consuming.
The features are often both over-specific and incomplete.
Has to be done for each task/domain

Humans organize knowledge in a compositional way.
Neural Network learns the following

o Person wears glasses

o Person is female

o etc
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2. Distributed Representations deal with curse of
dimensionality
Traditional solutions:

- Manual features

ENEELNEE

- Linear models

Neural Network learns to compose features together

- Non-linear composition of features

Pirsa: 16080011 Page 13/34
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3. Learning multiple levels of representation

e Biologically inspired learning
o Brain has a deep architecture.

e (Good intermediate representations which can be shared
across tasks

e Multiple levels of latent variables allow combinatorial
sharing of statistical strength

e Deep - Certain family of functions needs exponential
number of neurons if the network is shallow

ELNRELIEEE

Pirsa: 16080011 Page 14/34

R



L I SN AT
A SIS U PSI T At Laver 1 ) o6 ot al [2009)

Pirsa: 16080011 Page 15/34



Deep Learning overview.pdf

Summary of different learning methods

[ =1 L]
Output
»
L
Mapping
COutput COutput from
Qutput features
13 4
3 + -
* Mapping Mapping Most
from from complex
fealures foatures foatures
Hand- u
designed (LY YRRy TG R TSy I
program
Hand- Simplest
deaigrned Fealures .'.-“_"‘-
4 featuros
3 4 4
Input
Iyt Inpwa Input
Rule-based Classic Representation Covop
sysloms machine learning leaming
o by lec i
kil Fig:l. Goodfellow
—-— - —n

Pirsa: 16080011 Page 16/34



=]
°
=
o
2
£
°
a
=

>

<a
<
o

im

[SO 140.37% v

That’s good! But why now?

e Before 2006 training deep architectures was unsuccessful

e What has changed
o New methods for unsupervised layer wise pretraining
has been developed.
o More efficient parameter estimation methods.
o Lots of data ..
o Computing power (GPU’s and stuff)

Eamfspde:
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Demystifying neural networks
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e Neural Networks come with their own terminological baggage (just like
SVM's)

e |If you understand how logistic regression works, Then you already
understand the operation of a basic neural network neuron!

- wy,

b

Pirsa: 16080011 Page 19/34



Deep Learning overview.pdf

~ v FEEL <d > [SO 140.37% v

A neural network = running several logistic
regressions at the same time

Feed a vector of inputs through a bunch of logistic regression functions, then we
get a vector of outputs ...

“But we don’t have to decide ahead of time what variables these logistic
regressions are trying to predict!”

ELEEY EE

Isn’t it cool ?

It is the training criterion that will direct what the intermediate hidden variables

should be, so as to do a good job at predicting the targets for the next layer, etc.
- S

y

’ I'\,‘
&

LayerO Hicklen layers Layer 4
Output layer
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[ How to train parameters of the network

[f'] A single supervised layer

E - Compute error derivatives (gradients)

io | A multilayer net is more complex

- Internal (*hidden”) non-linear units --> function non-convex
- We “backpropagate” error derivatives through the model
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Feedforward Network
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A

|
Squared Distance
{ t
W3, B3 Linear

|

RelU Non-Linear Module

W2, B2 Linear

3

Obijective function, Cost

Linear Module

RelU

t

W1, B1 Linear

X (input) Y
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Recurrent Neural Networks

- Shared weights across different time step
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Generative RNN

P(wtlci=—1, Tt=24.  » 1)

log P(x¢|zi—1, Te—2,. ..

1)
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Teacher Forcing - Maximum log likelihood!
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Deeper RNNs

How to construct deeper networks

Yia Yt Yeer

+ deep hid-to-out
+ deep hid-to-hid

o >~ o +deep in-to-hid

Ordinary RNNs Ve Vt<.7“_:_>
.

Zra 11.
+ stacking / e h,‘.i he
he
hl-l Ay

. + skip connections for
creating shorter paths

-Y .Bengio
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Long term dependency

RNN gradient is a product of Jacobians

= L(ST(ST—l(- = St~|—1(3ta . ))))
0L oL 8ST 8.9t+ 1 Storing bits

88[ = 88’11 88,11ml il 881 robustly requires

sing. values<1

Eigenvalue of Jacobian > 1 — exploding gradient - gradient
clipping
Eigenvalue of Jacobian < 1 — vanishing gradient
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GRU and LSTM

- Path where gradients
can flow for longer

- Eigenvalue of Jacobian
slightly less than 1

- Long Short Term
Memory

- Gated Recurrent
Networks (lighter
version)
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output
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utput gate
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Encoder-Decoder Network

- Intermediate representation of meaning = ‘universal

representation’
- Encoder: word sequence — sentence representation
- Decoder: sentence representation — word sequence

For bitext data

English sentence
Y
\Eng"sh
*9ecode

t

French
encoder
French sentence

For unilingual data

English sentence

\
\

English
decode

X

/
/ Engllsh\

‘encoder

English sentence

Decoder

Y
T"_ b 2zl
il

Y:

e

N

L

-

Xy X2

Xr

C

Encoder

Cho et al EMNLP 2014; Sutskever et al NIPS 2014
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Attention Model for Neural Networks

- Sequence or image as input (or immediate)
- Upper level representation chooses where to look
- Assigning a weight (probability) to each input position

0000000000
Higher-level

* Soft attention (backprop) vs
* Stochastic hard attention (RL)

00000000

Lower-level

Bahdanau, Cho & Bengio, arXiv sept. 2014
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How does Neural Network remember things
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RNN cannot remember things for very long
- Cortex in brain can remember 20s
Need a ‘hippocampus’, separate memory module

- LSTM
- Memory networks

- Neural Turing Machine
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End-To-End Memory Networks
Weakly-supervised MemNN
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- no need to tell which memory location to use.
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Sukhbataar, Szlam, Weston, Fergus NIPS 2015, ArXiv:1503.08895)
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Current Problems in Deep Learning

1

Credit assignment in Recurrent Neural Networks
Online learning for RNN

Unsupervised learning

Generative models
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