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Abstract: Can quantum computers outperform classical computers on any computational problem in the near future? We study the problem of
sampling from the output distribution of random quantum circuits.

Sampling from this distribution requires an exponential amount of classical computational resources. We argue that quantum supremacy can be
achieved in the near future with approximately fifty superconducting qubits and without error correction despite the fact that quantum random
circuits are extremely sensitive to errors.
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Quantum supremacy J. Preskill, 2012

» With a quantum device
» Solve a well-defined computational problem
» Beyond the capabilities of state-of-the-art classical supercomputers
» In the near future
» without error correction.

» Not necessarily a practical problem.
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Approaches to quantum supremacy

» Optimization of classical functions
» quantum annealing.
» quantum approximate optimization algorithm (E. Farhi et. al).

» Hamiltonian evolution that cannot be simulated on classical
computers.

» Variational quantum eigensolver.
» Ground state energy of a Hamiltonian.

» Approximate sampling from a well defined distribution.
» Commuting quantum circuits (M. Bremner et. al).
» Boson sampling (Aaronson and Arkhipov).

» Sampling from the output of universal random quantum circuits.
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Requisites for quantum supremacy in the near-term

b 4

Not many qubits.

» No error correction in quantum devices.

» Shallow quantum circuits.

» Cost exponential in the number of qubits on classical computers.

» Specific figure of merit for the computational task.
» Unfortunately, we lack witness.
» Measure the figure of merit up to quantum supremacy frontier.

» Well understood extrapolation of the figure of merit beyond the quantum
supremacy frontier where it can not be measured

» Naturally related to fidelity.

» Predictions from theory for the figure of merit.
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Random quantum circuits

» Links correspond to Controlled Z (CZ) gates.
» Experimental constraints: two CZ gates cannot be share a bond

» Layer o
» Hadamard gates.

» Layer i from1to d
» select (i mod 8)th CZ configuration.

» on unoccupied sites, place at random single (subject to some constraints,
arxiv:1608.00263) qubit gates from the set X'/2 y1/2 T

» Good set in terms of the required circuit depth.
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Random quantum circuits
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Porter-Thomas distribution

» Random circuit U

N

W) = U|0) = Z(:,,;\:I:,,;)

1=1
» Sample from the output distribution.

» Outcome probabilities p; = |¢;|* = [{;|U|0)|?

» Real and imaginary parts of ¢; are uniformly distributed on a 2N-
dimensional sphere if the circuit is of sufficient depth.

» Porter-Thomas distribution  fpr(p) = N exp(—Np)

» Circuit should have sufficient depth to reach the Porter-Thomas regime.
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Porter-Thomas distribution
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Entropy

» Entropy

N
H = - Zp.,; In p;

i=1
» For Porter-Thomas distribution fer(p) = N exp(—Np)

= —/ Ne NPplnpNdp =InN — 1+~
Jo

v~ 0.577 Euler’s constant
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Convergence to Porter-Thomas
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Convergence to Porter-Thomas

» Entropy is a Gaussian variable
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Convergence to Porter-Thomas
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» Sublinear

» Should be proportional to v/n in 2D (Beals et al, 2013).
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Relation chaos

» Random quantum circuits are examples of chaotic systems

» Very sensitive to errors
» single Pauli error completely destroys the output distribution

8

N0 CITors -
7 one Pauli error (averaged) _—

(6]

o

.\'p

bit-string index (same ordering)

» Requires very high fidelity classical simulations
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Sampling on classical computers

» Evolving the full wave function.
» Memory requirement grows exponentially with the number of qubits.

» Requires at least 2.5 Petabytes for 48 qubits — the limit of what can be
done on todays supercomputers.

» Calculating (x;|U|0) using tensor transactions
» Exponential in the treewidth of the quantum circuit.
» Up to depth 25 for 48 qubits.

» Using the stabilizer mechanism (Bravyi and Gosset, 2016).
» Exponential in the number of T gates.

» Mapping to an Ising model with imaginary temperature

2
Z 10 Hi(s)

8

DE==\ Hi(s) = hi-s+5-J-s

» No structure.
» Strong sign problem.

Pirsa: 16080008 Page 18/30



Sampling on classical computers

» Evolving the full wave function.
» Memory requirement grows exponentially with the number of qubits.

» Requires at least 2.5 Petabytes for 48 qubits — the limit of what can be
done on todays supercomputers.

» Calculating (x;|U|0) using tensor transactions
» Exponential in the treewidth of the quantum circuit.
» Up to depth 25 for 48 qubits.

» Using the stabilizer mechanism (Bravyi and Gosset, 2016).
» Exponential in the number of T gates.

» Mapping to an Ising model with imaginary temperature

2
Z i0Hi(s)

8

D=\ Hi(s) = hi-s+5-J:s

» No structure.
» Strong sign problem.

Pirsa: 16080008 Page 19/30



Relation to computational complexity

= Z 1O H i (s)
S

» Strong computational complexity conjecture: Z can not be
probabilistically approximated asymptotically with an NP-oracle (Fujii
and Morimae 2013, Bremner et. al. 2015).

» Theorem: if p; can be classically sampled then Z can be approximated
with an NP-oracle (Bremner et. al. 2015).

» Contradiction.
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Sampling on classical computers

» Classical simulations fail for random quantum circuits with more than
approximately n = 48 and depth 2s.

» The best what classical computers can do in polynomial time is to
sample from the uniform distribution.
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Figure of merit

» Sample on a classical computer
» basically from the uniform distribution.

» Sample on a quantum device
» from p; = |(z;|U|0)|? or approximation.

» Need a figure of merit to distinquish the distributions, to measure the
quality of quantum sampling and to test quantum supremacy.
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Cross entropy

» Cross entropy H(py,p2) Zpl, In po;
=1 1
RO N
NI 55
Hy = H(po,pyu) = — Zl I Inpy(z;) = — ./u Ne MPlnpdp =InN + ~
H, z—ZpU Ynpy(z;)) =InN — 1+~

=il

AH =Hy— H; =1

» Hints to a test of quantum supremacy.
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Figure of merit (cross entropy difference)

» Algorithm A that approximates circuit U.
a=Hy— H(pa,py) = H()—l—ZpA |U) Inpy(x;)

» Shows the performance of algorithm A.
» Sampling from the uniform distribution aE=2()

» Quantum device without errors @y — 1l

» Quantum supremacy is achieved if 1 > ayea > C
» Cis given by the performance of the best classical algorithm.

» How can we measure alpha?
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Figure or merit
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» For large enough circuits, pu(z; ") cannot be obtained numerically.
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Circuit fidelity

» Alpha is related to circuit fidelity.

» Qutput of the experimental realization K of a random circuit U
pr = aU|0)(0|U" + (1 — &)og
» v is the circuit fidelity, ok represents the effect or errors
pr (i) = apy(z;) + (1 — &)(x;:|oK|z;)
Hy — H(pk,py) = Hy — aH; + (1 — &) Z(:I:?;‘UKLIL,',) In py (x;)
i

a = IEU[[‘]() == [‘](?’);\-’,7)(;)] = ]‘](] == (i’,]‘h_ =+ (l == (’i%)[‘[() = (o)

, sz I
» Depolarizing channel px = aU[0)(0|UT + (1 — mﬁ o=
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Test of quantum supremacy

» Digital error model
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Test of quantum supremacy

» Cross entropy difference can be measured up to the quantum
supremacy frontier with the help of supercomputers.

» Cross entropy difference can be extrapolated by varying the number of
qubits, the number of non Clifford gates and the circuit depth.

» Fit to theory: & = exp(—7r191 — 7292 — Tinit™ — "mes™)

» Better error model.

» Observation of a close correspondence between experiment, numerics
and theory.
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Summary

» Expect to be able to approximately sample the output distribution of
shallow random circuits of 7 x 7 qubits with significant fidelity in the
near term.

» It is impossible to approximately sample the output distribution of
shallow random quantum circuits of about 48 qubits with state-of-the-
art supercomputers (depth 25 or larger).

» Quantum supremacy.

» Relation to quantum chaos.

» Relation to computational complexity.

» New method to benchmark complex quantum circuits.

» The cross entropy method applies to other sampling problems.

Page 29/30



Quantum machine learning

» Probability distributions produced by random quantum circuits are
likely to be useless for machine learning.

» What about probability distributions produced by some other class of
shallow circuits? Can be useful for machine learning?
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