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Abstract: In the first part of thistalk, | will focus on the physics of deep learning, a popular subfield of machine learning where recent performance
on tasks such as visual object recognition rivals human performance. | present work relating greedy training of deep belief networks to a form of
variational real-space renormalization. This connection may help explain how deep networks automatically learn relevant features from data and
extract independent factors of variation. Next, | turn to the information bottleneck (IB), an information theoretic approach to clustering and
compression of relevant information that has been suggested as a framework for deep learning. | present anew variant of 1B called the Deterministic
Information Bottleneck, arguing that it better captures the notion of compression while retaining relevant information.
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What | get paid to do:

* From intracellular signaling to population oscillations:
bridging scales in collective behavior
Molecular Systems Biology (2015)

* Constant exponential growth through very different
metabolic strategies
Cell Reports (2014)

* Quantifying the role of population subdivision in
evolution on rugged fitness landscapes
PLoS Computational Biology (2014)

* Lag normalization in an electrically coupled neural
network
Nature Neuroscience (2013)

* The energetic costs of cellular computation
PNAS (2012)

* Coordination of carbon and nitrogen metabolism in e.
coli
Nature Chem. Bio. (2011)
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Outline of the talk:

* Deep learning and the renormalization group

* The deterministic information bottleneck

Panka] Mehta
Boston University
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What is “deep learning”?
» Learning multiple levels of representation/abstraction

» Has revolutionized object recognition, speech recognition, many
other emerging applications e.g. translation, natural language
processing, reinforcement learning

» Many industrial applications - Google, Facebook, Baidu, Microsoft,
etc.

» Feature learning with the prior that there are a hierarchy of
underlying factors
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Motivation

Understanding the success of unsupervised, pre-training in Deep Belief
Networks (DBNs) for dimensional reduction — (iterative coarse graining)

Reducing the Dimensionality of

Data with Neural Networks = o
G. E. Hinton® and R. R. Salakhutdinov ( 5Ioow‘ ] RTI‘]’"\" Jj
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Belief nets:

* Directed, acyclic graph of stochastic
variables

» Data are “visible” variables
» Would like to perform:

- Inference: infer hiddens given data

- Learning: adjust interactions to make
network more likely to generate observed data
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Hinton’s roundabout breakthrough:
Restricted Boltzmann Machines

Hidden

Can be learned efficiently, e.g.
contrastive divergence

Visible

—E(v,h) =Y civi+ 3 bih; + 3 wijvih; Elnerg_y of joint configuration,
i i i bipartite graph

Interactions of all orders: :
p(v) = [ dip(v.b) =  expl-En(v)]

ER(V) = — Z 1()g(1 1k (j’.z?" Wi 4 'U-;,-i—b_.}-) e Z Ci;
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Greedy layer-by-layer training of RBMs form a
Deep Belief Network

Fit lowest layer RBM ™"
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RBM
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Use hidden activities
as data for next RBM  Veve

Repeat as necessary...
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Kadanoff’s Variational RG

* Couple coarse grained and microscopic degrees
of freedom and integrate out (marginalize)
microscopic variables

* Introduce new operator that defines coupling:
e~ HX R}l = Ty, eTal{vid,{hsN—H({vi})

* Free Energy is invariant under transform if:

Trp eTA{uib R} —

(Simultaneously want to choose T to make the trace over v tractable.)

« Variational parameters chosen to minimize free energy difference
(or bound it in some way)

AF = Fylh] — F[v]
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Mapping between DBNs and Variational RG

* Can map two schemes to each other through following relation:

Tyo(v,h) = —FEg(v,h) + H(Vv)

* Can show under this identification that preserving Free Energy is
same as exactly modeling true distribution with variational distribution

Triael?™VP) = 1 & Dy (P(v)||Ps(v)) = 0

* RG Hamiltonian is exactly the “Hamiltonian” describing the
hidden, coarse-grained degrees of freedom

HFY(h) = H*PM (h) = —logTry P(v,h;0) — log Z()
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Mapping between DBNs and Variational RG

* Can map two schemes to each other through following relation:

To(v,h) = —FEy(v,h) + H(v)

* Can show under this identification that preserving Free Energy is
same as exactly modeling true distribution with variational distribution

Trine*™VP) =1 & Dy (P(v)||Ps(v)) = 0

* RG Hamiltonian is exactly the “Hamiltonian” describing the
hidden, coarse-grained degrees of freedom

HFY(h) = HI**M (h) = —logTry P(v,h;0) — log Z(0)
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Comparing DBNs and Variational RG

Property

is defined

How interactions are
defined

Exact transformation

Approximations

Method

What happens under
coarse-graining

Variational RG

P(v)
T(v,h)

Tre ™M =1

Minimize or bound
free energy
differences

Analytic (mostly)

Relevant operators
grow/irrelevant shrink

Deep Belief
Networks

How input distribution Hamiltonian defining Data samples drawn

from P(v)
E(v,h)

KL divergence
between P(v) and
variational distribution
is zero

Minimize the KL
divergence

Numerical

New features emerge
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Deep belief networks implement a form of RG
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Ongoing work:

* Flow away from criticality when ascending layers

» Do deep networks work best for near-critical data?
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Outline of the talk:

* Deep learning and the renormalization group

* The deterministic information bottleneck

DJ Strouse
Princeton University
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Information bottleneck (|

Y variable of
relevance

input data X -
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Tishby, Pereira, Bialek 1999
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Information bottleneck (|

p(x,y)

Y variable of
relevance

input data X -

q(t | fo

v
¢
.
.
-

relevant information

statistics: soft sufficient statistic
info theory: lossy compression, distortion ~ relevance
machine learning: maximally informative clustering
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1B examples

X 75 Ve

user idemographics & future purchase/
. | : cluster ID . :
segmentation | past behavior click behavior
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IB examples

X ik )

user idemographics & future purchase/
. . cluster 1D : :
segmentation ‘ past behavior click behavior

human
attention & \ sensory input
memory |

neural activity/ future sensory
synaptic changes input?
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IB examples
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Information bottleneck (|

X —Y data: p(z,v)

B
s

min L{q(t|z)] =1(T;X)—-BI(T;Y)

q(t|xz)

Tishby, Pereira, Bialek 1999




Information bottleneck (IB)

D€ e data: p(z,9y)
N free parameter: 8 >0
/& Markov constraint: 7'« X +— Y

min L{q(t|z)]=1(T;X)—-BI(T;Y)

q(t|x)
q(t)

R [=BDkrlp(y|z)|q(y|t)]




Information bottleneck (|

D€ e data: p(z,9)
N free parameter: (>0

=)

i Markov constraint; 7T« X «+— Y

min L{q(t|z)]=1(T;X)—-BI(T;Y)

q(t|xz)
q (1)
x, [3)

exp |[—BDkrlp(y|z)|q(y|
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Information bottleneck (|

NE ) data: p(z,y)
NG free parameter: [ >0

=)

T Markov constraint; 7T+ X «+— Y

min L{q(t|z)]=1(T;X)—-BI(T;Y)

q(t|xz)
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Measuring compression

mm Lig(t|= CT X)|—-BI(T;Y)

q(t|x)
channel coding/
rate distortion theory

T B Bt v

min L |c H (T (e
min L g (¢ | [ ) [ )

source coding

Pirsa: 16080006 Page 26/34




Measuring compression

Lqg(t 1(T; X)|— BI(T;Y)
o g (| z)] C £

channel coding/
rate distortion theory

Tom R VR

min L |c H (T il (5
puici (_m) [ )

source coding

Lig — Lpis = I(X;T) — H(T)
— _H(T | X)

implicit encouragement of stochasticity
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A generalized IB




A generalized IB

L(_r H(T) - (XH(T | X) S ,BI(Y,T)

1
go(t | ) x exp [5 (log g (t) — BDkLIP(y | ) | qa(y | ?‘)])]




Solving the DIB

Lo=H(T)-aH(T|X)-pBI(Y;T)

1
Ga(t | 2) x exp | - (logaa(®) - SDaslply | )| 4a(y | )

lim q,(t | ) = 6(t — f(x))

a—0

f(2) = argmax(log g(t) — BDwlp(y | @) | a(y | )
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B vs DIB: summary

Lig =I(X;T) - BI(Y;T)

q(t)

T) = Z(a ,mcxp[ BDxLp(y | z) | q(y | t)]]

Lpis = H(T) — BI(Y;T)
gois(t | ) = d(t — f(z))
f(z) = argmax(logq(¢) — ADkulp(y | 7} | a(y | £)))




B vs DIB: experiments

IB plane DIB plane

algorithm
DIB
~ 1B

log(ITl) Iog(ITﬁ

8
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Summary

* proposed new cost functional for extraction of relevant
information based on source coding (rather than
channel coding)
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Summary

proposed new cost functional for extraction of relevant
information based on source coding (rather than
channel coding)

conseqguence -> deterministic encoder/hard clustering
(rather than stochastic/soft)

IB and DIB exhibit non-trivial differences when fit to
data

DIB fits run 1-2 orders of magnitude faster than |IB

bonus: method to interpolate between |IB and DIB
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