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Abstract: Quantum control is valuable for various quantum technologies such as high-fidelity gates for universal quantum computing, adaptive
guantum-enhanced metrology, and ultra-cold atom manipulation. Although supervised machine learning and reinforcement learning are widely used
for optimizing control parameters in classical systems, quantum control for parameter optimization is mainly pursued via gradient-based greedy
algorithms. Although the quantum fitness landscape is often compatible for greedy algorithms, sometimes greedy algorithms yield poor results,
especiadly for large-dimensional quantum systems. We employ differential evolution algorithms to circumvent the stagnation problem of
non-convex optimization, and we average over the objective function to improve quantum control fidelity for noisy systems. To reduce
computational cost, we introduce heuristics for early termination of runs and for adaptive selection of search subspaces. Our implementation is
massively parallel and vectorized to reduce run time even further. We demonstrate our methods with two examples, namely quantum phase
estimation and quantum gate design, for which we achieve superior fidelity and scalability than obtained using greedy algorithms.
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Introduction

Problem

Develop policies to control 2 dynamics, subject to constraints (e.g.,
run-time T, # particles N, # control parameters K) when greedy
algorithms fail.

Applications

e 2 gate design o Coherent control of molecular dynamics
e Adaptive 2 metrology o 2 measurement trajectories & readout

Dynamically change parameters Set of instructions that determine
so system follows closely the control parameters during the
reference or optimal trajectory. system's evolution.
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Introduction

Heuristics-based reinforcement-learning algorithms can generate policies for
designing desired 2 channels when greedy alternatives fail.

Greedy Algorithms Reinforcement Learning

Optimize using local conditions, Exploit knowledge & explore
e.g., local increments perhaps terrain to seek better policy
with steepest gradient. based on reward/punishment.

Hill climbing Quasi-Newton Non-convex Particle swarm
landscape optimization

goo.gl/bcfol0 goo.gl/fUjwVT
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Introduction

Heuristics-based reinforcement-learning algorithms can generate feasible
policies for designing desired 2 channels when greedy alternatives fail.

Adaptive Phase Estimation 2-Gate Design Policies

Policies for single-shot Policies for single-shot high-fidelity

adaptive phase estimation three-qubit gates for an architecture of
scheme with precision three linearly coupled 4-level transmons.
exceeding the standard 2
limit (S2ZL) up to N = 100 =
particles including noise &
loss.
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2 Metrology

2-Enhanced Metrology (ZEM) for Interferometric Phase

SEL

Measure reaction or interference

on particles without quantum

correlation: Ap ~ ﬁ

Entanglement/Squeezing

Exploit multi-partite entangled
state or squeezed collective
uncertainty relations: Ay ~ %

Sanders
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2 Metrology

From 2EM to AZEM for Interferometric Phase

Quantum System

|\I!N> [ PU :

Quantum System
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2 Metrology

AZEM Policy as Decision Tree
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2 Metrology

AZEM Policy as Decision Tree
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2 Metrology

AZEM Policy as Decision Tree
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2 Metrology

AZEM Policy as Decision Tree
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2 Metrology

Heuristic: Generalized Logarithmic Search
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2 Metrology

Evaluating Policy o over K = 10N? Trials with Noise

sine state
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2 Metrology

Evaluating Policy o over K = 10N? Trials with Noise

sine state
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2 Metrology

Decision Tree as Vector Space & Fitness of Elements

Vector in [—m, 7]V Sharpness from 0 to 1

As, | ... pon ] oy | N
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2 Control

Quantum Logic Gates

@ Single Qubit Gate

@ Three Qubit Gates

@ Two Qubit Gate

~
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2 Control

Controlled-Z gate — Avoided-crossing-level gate
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2 Control

Controlled-Controlled-Z Gate
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2 Control

2 Control & Gate Design

Hamiltonian with drift & control

L
AIA(D)] = AY + A(t) - HS = A% + Y~ Ay(t)Hf
=1

Resultant unitary evolution

J[A(©): ©] = T exp {—i /0 : H(A(T))d»r}

M time intervals
Equal time intervals ©/ M = (K = LM) dimensions

2 control optimization objective function

Operation/gate: F(©) = Tr [U[A(@); O] CCZT} /8

Barry C. Sanders Machine Learning for £ Metrology & ...

Pirsa: 16080004 Page 20/30



Differential evolution

Search-Space Dimension D, # Constraints T, # Agents =

Adaptive Phase Estimation
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Differential evolution

Heuristic-Based Machine-Learning Scheme

Differential Evolution
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Differential evolution

Iteration (/) up to Generation G
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Differential evolution

Heuristic-Based Machine-Learning Scheme

Differential Evolution
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Differential evolution

SuSSADE
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Conclusion

Adaptive Phase Estimation

= restricted

= restricted ® unrestricted
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Conclusion

Adaptive Phase Estimation

" restricted

= restricted ® unrestricted
* unrestricted bounds

I ———— - — —— PP

10 80

1

—8aL

* DE o=0,n=0

- ==PS0 g=0.2,1=0

* DE 0=081-0

=ML

+ DE 00.2, =0.2

== Hill Climbing 0=0.0, n=0.0

e
T

L 1)
i

10

f(g)—2 e R N—1.442

Barry C. Sanders Machine Learning for £ Metrology & ...

Pirsa: 16080004 Page 27/30



Conclusion

Assessing Performance of CCZ Design Algorithms

G=200000

Method
Quasi-Newton
Simplex

DE

SuSSADE

e g = 30MHz, © = 26ns
@ # runs for Quasi-Newton is 40
o # runs for DE & SuSSADE is 20
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Conclusion
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Conclusion

Summary

@ Heuristics-based learning algorithms can generate feasible policies for
achieving desired 2 channels when standard algorithms fail

@ We generate policies to design single-shot high-fidelity three-qubit
gates comprising linearly coupled transmons

@ We generate policies to design single-shot agaptive phase estimation
surpassing the standard 2 limit

@ Our approach can be applied to other 2 control problems for any
desired target channel
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