Title: QI Basics
Date: Jul 19, 2016 09:00 AM

URL: http://pirsa.org/16070012
Abstract:

Pirsa: 16070012 Page 1/37

Quantum Computing Basics

John Watrous
Institute for Quantum Computing
University of Waterloo

Pirsa: 16070012 Page 2/37

Part 1

Integer factoring, the quantum circuit model,

and simulating classical computations.

Pirsa: 16070012 Page 3/37

Integer factoring

The fundamental theorem of arithmetic states that every integer N > 2
can be expressed as a product of prime numbers in a unique way (up
to the ordering of the prime numbers).

For example:
15=3.5
1O — 2 0 2% . 11l

33478071698956808786044169848212690817704794
12301866845301177551304949583849627207728535 08371376856801243138808288379387800228761471
60505334702197322452151726400507263657518745 1652531743087737814467999480
20219978646938995647494277406384592519255732
63034537315482685079170261221429134616704292
14311602221240479274737794080665351419597459 36746043666799590428244633799627952632279158
856002143413 16434308764267603228381573966651127923337341
7143396810270092798736308917

The integer factoring problem is to output the expression of a given
positive integer (represented in binary notation) as a product of prime
numbers.

Pirsa: 16070012 Page 4/37

The importance of computational efficiency

If we are interested in solving a particular computational problem, it
is obviously not enough to have an algorithm for solving that problem.
We need an algorithm to be efficient if it is to be useful.

For example, here is a high-level description of an algorithm for
outputting the smallest prime factor of a given integer N > 2:

For k from 2 to N do
If k divides N then output k and stop

The running time for this algorithm is O(N(log N)?), assuming a
straightforward way of testing if k divides N. This running time is
exponential in the input length, which is roughly log N.

For a 1000-bit number equal to the product of two 500-bit primes, the
algorithm would take many times the age of the universe on the fastest
(classical) computer on this planet.

Pirsa: 16070012 Page 5/37

Pirsa: 16070012

Better classical algorithms for factoring

The algorithm for finding prime factors from the previous slide is
inefficient, but this does not imply factoring cannot be solved efficiently.

The fastest known classical algorithm is the number field sieve, which
(with some heuristic assumptions) runs in time

C[IogN)1/3(|ogIogN)2/3

for some constant ¢ > 0.

No polynomial-time factoring algorithm is known—such an algorithm
would run in time O((log N)¢) for some fixed constant c.

On the other hand, it has not been proved that no polynomial-time
algorithm for factoring with a classical computer exists. Proving lower
bounds on the running time of algorithms is an extremely difficult
challenge within theoretical computer science.

Page 6/37

Formalizing the notion of efficiency

There are different ways to formalize the number of steps (or
elementary operations) a given algorithm requires.

We'll focus on quantum algorithms in the quantum circuit model.

In its most general formulation, a quantum circuit is any acyclic network
of constant-size quantum operations (or channels) on qubits, like this:

The total number of operations (or gates) represents the running time
of the algorithm implemented by the circuit.

Pirsa: 16070012 Page 7/37

Pirsa: 16070012

Efficient quantum circuit algorithms

Suppose that a computational problem of interest is represented by a
collection of functions {fy, f2, f3, ...}, where

i, 5 4@, ™ — 4@,

We say that we have an efficient quantum algorithm for this problem
if there exists a set of quantum circuits {Q1, Q», Q3, ...} with these
two properties:

1. For each x € {0, 1}™, if we apply Q. to |x) and then measure with
respect to the standard basis, we obtain f,, (x) with high probability.

2. There is a constant ¢ such that size(Q,,) = O(n®). In other words,
Q. has size polynomial in n.

Technically speaking, we also need uniformity constraints on the set
{Q1, Q2, Q3, ...}. Thatis, there should be an efficient classical

algorithm that computes a description of Q,, for a given input length n.

Page 8/37

Pirsa: 16070012

Unitary circuits

When discussing quantum algorithms, we commonly restrict our
attention to unitary gates and circuits. A typical universal gate set:

Toffoli gate Hadamard gate Phase gate

o) —J— Hla) | | lo) —— ()°la)

0)+(—1)91) (Also called a

la) —e—— |a)

b) —e—— |b)

Hla) = |

c) b— [c ® ab) V2 n/4 gate.)

(A universal gate set is one that allows arbitrarily good approximations
to arbitrary gates.)

Page 9/37

Pirsa: 16070012

Unitary operations can simulate arbitrary operations

It is always possible to simulate a general quantum operation by a
unitary operation. Take any operation of the following form:

n m
qubits qubits

There is a unitary operation U that induces this operation as follows:

n m
qubits qubits

|02m)

Page 10/37

Simulating classical circuits

It is not difficult to show that classical Boolean circuits can be simulated
by quantum circuits. It is enough to consider the following gates:

AND gates FANOUT gates

Pirsa: 16070012 Page 11/37

Simulating classical circuits

One obtains a simulation of a classical Boolean circuit as follows:

Original circuit Unitary circuit

Pirsa: 16070012 Page 12/37

Simulating classical circuits

Given a unitary circuit Q that deterministically computes a function
y1---Ym = f(x1 - xy) With garbage, one can obtain a garbage-free
implementation as follows:

0)

0)

la; B y)

|am @b Um)

Pirsa: 16070012 Page 13/37

Part 2

Deutsch’s algorithm; eigenvalue estimation

Pirsa: 16070012 Page 14/37

Pirsa: 16070012

Deutsch’s problem

A simple computational problem, called Deutsch’s problem, illustrates
an advantage of quantum over classical algorithms.

We are given a function f : {0, 1} — {0, 1}, in the form of a black box.
Specifically, we are given access to its unitary implementation:

a) @)
b) b @ f(a))

The goal is to determine to which of the following categories f belongs:

Constant Balanced
f(a) a
0 0
1 1

Page 15/37

Query complexity of Deutsch’s problem

How many uses of the black box are required to solve Deutsch’s
problem?

Classical algorithm: 2 queries are necessary (and sufficient).
Quantum algorithm: a single query suffices. Here is the algorithm:

0 constant
1 balanced

[b2) hs3)

(—1)f® — (—1)*{L) 0) —[1)
) 0)

Pirsa: 16070012 Page 16/37

Pirsa: 16070012

Spectrum of a unitary operation

Suppose U is a unitary operation on n qubits.

As a linear operator, Ul acts on a space of dimension N = 2™,

Because U is unitary, we know from linear algebra that it has N
orthogonal eigenvectors

WP1), W2), ... N
with corresponding eigenvalues

7\1 i eZT[it)l A2 o e27‘ri.02

Page 17/37

Pirsa: 16070012

Eigenvalue estimation problem

The eigenvalue (or phase) estimation problem is as follows:

Input: a quantum circuit implementing U, and an eigenvector
) of U (as a quantum state).

Goal: compute (or approximate) © € [0, 1) such that
U [y = e2™©) .

In general, we only know how to efficiently solve this problem with high
accuracy if we can efficiently implement a A, (Ul) transformation:

m qubits { k)

n qubits { D)

Page 18/37

Pirsa: 16070012

Action of controlled unitary on eigenvectors

Consider the action of a A, (U) transformation when the lower register
IS set as an eigenvector of U:

M-—1
€
k=0

27mik 0 Ik

In summary, we obtain this transformation:

1 M-—1 M —
Am (L) (m Z k)) ®) = (Z
k—0

Ik —(0)

1

e27nk0 |k) R N))

ol ML = 2™,

Page 19/37

An easy special case

Let us consider the special case in which

for some choice of) € {0, ..., M — 1}. (In general, we cannot assume 0
takes this form.)

From the previous slide:

Easy to create) Want to compute)
from this state

Pirsa: 16070012 Page 20/37

Pirsa: 16070012

An easy special case
Our goal is to compute j from the state

Z eQ’?TLM |k

k=0

for eachj € {0

For this to be possible, the set of states {|¢o) [bam—1) } must

be perfectly distinguishable (i.e., form an orthonormal set). It can
be shown that this is indeed an orthonormal set, so it is possible in
principle to accomplish our goal. . .

We require a unitary transformation V' such that
Vib;) =i},

so that we may simply apply V to [¢;) and measure in the standard
basis to determine j.

Page 21/37

The required transformation

The requirement that V satisfies V' [¢;) = [j), or equivalently
Vi) = [ds),

forall) € {0 M — 1}, is enough to uniquely determine V. As a
matrix, we have

for w = e2™/M,

This is a familiar matrix to many. . . it represents the mapping known as
the discrete Fourier transform.

Pirsa: 16070012 Page 22/37

Pirsa: 16070012

The eigenvalue estimation algorithm

We refer to the unitary operation V from the previous slide, which
applies the discrete Fourier transform to an M dimensional state
vector, as the quantum Fourier transform, and will denote it Faq.

The final algorithm looks like this:

)

In the special case that 0 = 5 forj € {0,...,2™ — 1}, the
measurement (in the standard basis) results in outcome j (in binary)
with certainty.

Page 23/37

Two remaining issues

There are two remaining issues to consider:

1. We need to know how to implement the quantum Fourier transform
Fom efficiently.

2. We do not yet know what happens in the case that 0 does not take
the form j/2™ forj € {0 o — 1L

The first issue is addressed by a recursive construction requiring
O(m?) gates in total. For example, Fa5 is implemented like this:

The phase gates are defined as Pk : |a) + e>™¢/K |qa).

Pirsa: 16070012 Page 24/37

General eigenvalues

The last issue remaining is that © may not take the form j/2™ for
) €1{0 2™ — 1}. We do not need to change the algorithm to handle
this case. ..

For a general value of 0 € [0, 1), the final state of the top m qubits
(before the measurement) is

1 M—1 /M-1 : :
m Z (Z e27nk(8~)/M]) |]>

j=0 k=0

so the probability to measure a given j is

M—1 2
) 1 R
Pr[measure j] = PElcastal o)
k=0
This distribution is tightly concentrated around those values of j for
which j/M is a close approximation to © (equating 0 and 1).

Pirsa: 16070012 Page 25/37

Pirsa: 16070012

Concentration of measurement outcomes

The following plot shows the concentration of measurement outcomes
around OM for M = 32 and varying values of 0 € [10/32,11/32].

ML = 812,) = &I/

o
~
o

=
N
(]

=
=
wn
@ o5
(]
£
| -
a

0e L L L 000099 L S L]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 20 21 22 23 24 25 26 27 28 29 30 31

]

In general, after a small number of samples the median j)/M value is
likely to be within 1/(2M) of 0.

Page 26/37

Part 3

Shor’s algorithm for integer factoring

Pirsa: 16070012 Page 27/37

Pirsa: 16070012

Shor’s algorithm

In 1994, Peter Shor (then at AT&T Labs) discovered a polynomial-time
quantum algorithm for factoring integers. His algorithm requires

O((logN)?)

steps, which is asymptotically much better than

C[IogN)1/?’(Iog|og1\l)2/3

steps for the number field sieve.

Shor’s algorithm can be understood through the technique of
eigenvalue estimation, so we've already covered the main quantum
part of the algorithm.

Page 28/37

Pirsa: 16070012

Order-finding and factoring

Given an integer N > 2, and another integer a with ged(a, N) = 1, the
order of a modulo N is the smallest positive integer r such that

a" =1 (mod N).

The order-finding problem is to compute r given N and a as input.

We can hope to factor N by knowing the order of random choices a

modulo N. Find nontrivial factors (and then recurse) using this method:
. Choose a € {2 N — 1} at random. We're done if gcd(a, N) > 1.

. Compute the order r of a modulo N.

. If we are lucky, 1 is even, so N divides (a'/? + 1) (a2 —1). If we
are lucky again, gcd(a"™? — 1, N) is a nontrivial factor of N.

Elementary number theory: we will be lucky (both times) in step 3 with
probability at least 1/2 (assuming N is odd and not a prime power).

Page 29/37

Pirsa: 16070012

Order-finding and eigenvalue estimation

For a given choice of N and a with gcd(a, N) = 1, define a unitary
transformation

Mg [x) lax (mod N)) if x € {0
alX) =
|x) otherwise.

What are the eigenvalues/eigenvectors of M ?

Here is one eigenvector with eigenvalue 1:
o) =1[1) = @) = @it g T

(Assume everything inside the kets is taken modulo N from now on.)

Here is an eigenvector with eigenvalue w = exp(27mi/r):

N’l) — |1> T (,Uﬁl ‘O.) -+ (,l_)_2 |a2> AL a0 AL w~(1‘~1] |at‘~1> .

Page 30/37

Pirsa: 16070012

Order-finding with a nice eigenvector

Suppose that we feed the eigenvector

N)l) = i(“.) T (,Uﬁl [a) -+ wﬁz |a2> 1L 6 o0 L w*(T‘*l) |a1'~1>)

NG

into the phase estimation procedure from earlier:

|D'|11> H®m

1) 1)

The associated eigenvalue is w = e2™ for 0 = 1/r. After a few
repetitions, we obtain j € {0 2™ — 1} sothatj/2™ ~ 1/r.

Page 31/37

Order-finding with a nice eigenvector

We know j so that) /2™ ~ 1/r, so rounding 2" /j to the nearest integer
will give r if the approximation is close enough. If we take

m = 2[log(N)] + 1, (1)

we will have enough precision to recover r.
There are two issues that need to be resolved:
1. We need an efficient implementation of A, (M) for m asin (1).

2. We do not know how to construct [\y).
The first issue is the easier one: the transformation
Ao (ML) 5 (1) B = [la®x (mod N))

(for x € {0 N — 1}) is modular exponentiation, implementable
through repeated squaring using O((log m)(log N)?) gates.

Pirsa: 16070012 Page 32/37

Obtaining useful eigenvectors

The second issue, which is that we do not know how to construct [\py),
IS more serious. .. we will not try to construct this state, but instead will
use an alternate solution.

Let us define

1 . .
|1|)k> = —(|1> 4wk |C1> L2k |a2> S o= (=0 |a1—1>)

\/.F
ol Cereln I =), 1, ., ..., r — 1. It holds that

M N)k> s M”c) :

i) is an eigenvector of M, with associated eigenvalue w* = e?7r .

Let us also observe that

il

1) Ji

(Do) + 1) + -+ + [y_1)).

Pirsa: 16070012 Page 33/37

The final eigenvalue estimation procedure

Consider what happens when we substitute 1) for an eigenvector in
our eigenvalue estimation procedure:

1)

Owing to the fact that

1) = \%(wo) bt o by s

we will obtain an outcome j with j/2™ ~ k/r fork € {0, 1, ..., r—1}
chosen uniformly at random.

Pirsa: 16070012 Page 34/37

Pirsa: 16070012

Processing results to obtain the order
Givenj € {0,...,2™ — 1} such that
WIS
g
fork € {0,1,...,r— 1}, we can recover integers s and t so that

S k

L T.
using the continued fraction algorithm. We then have that t is a
divisor of .

Repeating the entire process a small number of times, we obtain

5160 kl S0l S3 kg

'tl I : ‘t2 [‘|;3 w 1

1

Page 35/37

Pirsa: 16070012

Summary of Shor’s algorithm

To factor an odd, non-prime power integer N > 2, we apply the
following algorithm recursively:

1. Choose a € {2 N — 1} at random. If d = ged(a, N) > 1, then
output d and stop.

2. Compute the order of a modulo N:

(a) Apply the eigenvalue estimation procedure to the unitary
transformation M, and the state |1), obtaining j/2™ =~ k/r for
a random k € {0

(b) Use the continued fraction algorithm to compute the fraction
s/t with t < N that most closely approximates j/2™.

(c) Repeat (a) and (b) O(1) times, and let r be the least common
multiple of the values of t obtained.

3. lfriseven and d = gcd(a™? — 1, N) is a proper factor of N, then
output d and stop. Otherwise, return to step 1 (or admit failure).

Page 36/37

Pirsa: 16070012

Further reading

Other quantum algorithms, with a variety of speed-ups over classical
algorithms are known.

For a comprehensive list, see the quantum algorithms zo0o0:
http.//math.nist.gov/quantum/zoo/

If you wish to know more, a good place to start is with these survey
papers on quantum algorithms:

» A. Childs and W. van Dam. Quantum algorithms for algebraic
problems. Reviews of Modern Physics 82: 1-52, 2010.
(Available as arXiv:0812.0380.)

» M. Mosca. Quantum Algorithms. In Encyclopedia of Complexity
and Systems Science, Springer, 2009.
(Available as arXiv:0808.0369.)

Page 37/37

