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Abstract: <p>Raussendorf introduced a powerful model of fault tolerant measurement based quantum computation, which can be understood as a
layering (or &odoliation&€s) of a multiplicity of Kitaev&€™s toric code. | will discuss our generalisation of Raussendorf&€™s construction to an
arbitrary CSS code. We call this a Foliated Quantum Code. Decoding this foliated construction is not necessarily straightforward, so | will discuss
an example in which we foliate a family of finite-rate quantum turbo codes, and present the results of numerical simulations of the decoder
performance.</p>

<p>If | have time, | will discuss some ongoing work (with Gavin Brennan) on relational time applied to topological quantum field theories, in
particular, how anyonic systems with essentially trivial dynamics can still exhibit correlations that track &odime”.</p>
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Toric codes defined

® A toric code 1s an encoding of a logical quantum state
into a set of physical “spins”.

® Physical spins live on the links of an Lx/Z lattice:

® Periodic boundary conditions
(i.e. embeddable on a torus)

® Kitaev, quant-ph/9707021
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Toric codes defined

B A toric code 1s defined by its stabiliser operators:
stars and plaquet(es

o Plaquettes commute with other

plaquettes. | Lty
® Stars commute with other stars. # Ml ¢ 7
: QDD
® Plaquettes commute with stars # ,
(X:X,,2:;Z;] =0 ¢ 4 4 +14

: k ¥
12 The COde 1S a Sllﬂl.llt&l'leOLlS

eigenstate of all the stabilisers, with eigenvalue +1
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Logical qubit operators

® What are the logical qubit Pauli operators?

® Need to find anticommuting operators that commute
with stabilisers, and are independent of them.

® For logical qubit p ’ '
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Losing Memory

® Can deform logical operators around the loss

~

22—3'1)22222

® Can find products of stabilizers F 2
that are independent of lost qubit. =72 3
® Super-plaquettes (and super-stars)” o - /9'

detect ends of error chains

® | osses are located errors: we know where they are.

® i.e. redundancy in stabilizers and logical operators.
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Losing Memory

® Can deform logical operators around the loss
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Losing Memory gracefully
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FTQC!
® How about fault tolerance and quantum computing?

® A 3D lattice does the job...

Raussendorf, Harrington, Gq\uﬂ NJP9, 199 (2007)

NN

® Same tricks work

(deforming logical
operators and making
super-stars)
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FTOC threshold
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Cluster State Progenitors

Toric code Cluster State Progenitors:
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Toric code Cluster State Progenitors:
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Toric code Cluster State Progenitors:
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Toric code Cluster State Progenitors:

Z X &
X X
Z X &
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Steane code Cluster State Progenitors:
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Steane code Cluster State Progenitors:
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Steane code Cluster State Progenitors:
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Steane code Cluster State Progenitors:
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Shor code Cluster State Progenitors:
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Assertion: can construct CSS code states from
cluster states (defined on code qubits plus ancilla),
by single-qubit X- measurement
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Shor code Cluster State Progenitors:
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Raussendorf=Foliated Surface Code

Long-range quantum entanglement in noisy cluster states

Robert Raussendorf, Sergey Bravyi, and Jim Harrington
Phys. Rev. A71, 062313 - Published 14 June 2005
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c) A

Measure “bulk” qubits in X basis
leaves end surface code faces
entangled: X|. Xg & ZL ZR
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-oliated Steane Code

m, primal m+1, dual m+2, primal
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Assertion: can foliate code
cluster states together.

Bulk measurements leave
end faces entangled

Errors are detected by parity
check operators
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Foliated Turbo Code

Finite rate code
Concatenated convolutional code (with a shuffle)

s

]
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-oliated Turbo Code

Finite rate code
Concatenated convolutional code (with a shuffle)

m, primal
sheet

19Ae| |

m+1, dual
sheet

m+2, dual
sheet
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Error Decoding

* Assume CSS code has a “good” decoder

» Can we build a decoder for foliated codes using
CSS decoder as a subroutine?

* n.b. not generally done for surface code
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Heuristic Decoder

1. For each code qubit, j, in sheet m, CSS decoder calculates an
in-sheet error model probability distribution,)

Pm(oj | Sm U Prsi(ax))

subject to the measured code syndrome Sp, and an assumed
error distribution, Pn.1(ak), for errors on ancilla qubits, ag, in
adjacent dual sheets.

2. From 1 fix code qubit error model, Prn(oj ), and calculate error
model on the dual-sheet ancilla qubits, Pm.1(ak | Sms1 U Pm(0)))

3. lterate to step 1, using the result of Step 2 for Pm.1(ax),
repeating until each error model converges.
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* Results for turbo code [[n, k=n/25, d=25]]
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Conclusions

Can clusterize CSS codes
Can foliate clusterized CSS codes

Heuristic decoder for foliated code using soft CSS
decoder

Promising performance from numerical studies

Potential for quantum repeater networks with finite
rate codes

Code deformation, quasi-transversal codes etc for
FTQC?
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