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Abstract: <p>Improving the broadband quantum sensitivity of an advanced gravitational wave detector is one of the key steps for future updating of

gravitational wave detectors. Reduction of the broadband quantum noise needs squeezed light with frequency dependent squeezing angle. Current
designs for generating frequency dependent squeezed light are based on an ultra-high finesse filter cavity, therefore optical loss will serious
contaminate the squeezed light. To circumvent this problem, we propose an new method for generating a frequency dependent squeezing of
guantum noise field quadrature by engineering the quantum entangled field pairs which are filtered through the interferometer arm cavity. This new
method may have the potential to beat the quantum noise by 7dB in recent future.</p>
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Gravitational Wave Detection

GWs carry unique information
about sources

GWs may allow further test of GR,
in strong curvature region

e

VIRGO Pisa

LIGO Hanford LIGO Livingston KAGRA Hida
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Gravitational Wave Detection
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Small motion:
Typical magnitude of strain: h ~ §L/L ~ 107%*  Distant change: 10~ ""m

Current displacement sensitivity: Ax ~ L \/.S',,;,A‘I‘ ~ 107" m

Quantumness :
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Sensitivity
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This is also called “Standard Quantum Limit”

Further improvement of sensitivity (A+):
Reduce guantum noise: squeezing technique

Reduce thermal noise: bigger mirror, bigger laser beam size, better mirror coating
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Quantum noise Limited Sensitivity

Signal
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Signal amplitude deereases when 2 inereases
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Quantum noise Limited Sensitivity
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Improving the sensitivity: Redistributing the uncertainty

ETM ] ¢

Can not have a broadband
improvement !

Need a frequency dependent
squeezing
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Improving the broadband sensitivity: rotate the field!

H J Kimble K S Thorne

Frequency dependent rotation angle can .
be realised by filtering the squeezed o 1000 100

light through detuned cavities 1
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Filter cavity requirements

Detuning ~ Bandwidth ~ €2, several hundred Hertz! Extremely narrow!

What determines a cavity bandwidth?

we
ALF

To obtain such a narrow bandwidth, we need:

’y:

@ Either extremely long cavity — proposed by Kimble and Thorne: km scale

Extremely expensive: 10-100 million

® or compact cavity with ultra-high finesse 7
— is under developing mainly in MIT group lead by Matthew Evans
But ultra-high finesse means ultra-sensitive to the optical loss

In real experiments —extremely difficult: especially for 3rd
generation detectors
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Could we use a simpler way to squeeze the noise in a
broadband way?

Our alternative proposal:

- Y “Conditional squeezing”

- Y Arm cavity as filter cavity
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Traditional squeezing
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Conditional squeezing
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Conditional squeezing: Conditioning

Bearing in mind: last page:

¢y correlate with dy in the same way as ¢y correlate with —ds

Signal C2 Idler dz
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can predict c-g= ¢100S6 - C25iN6 measuring de = d1cos@ + dzsin®
after subtraction: conditionally squeezed!
1 Measurement of
Scpeg = prr S txrseno = cosh 2r entangled beam
HOL produces conditional
~3dB less than single squeezer squeezing
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Frequency Dependent Conditioning

Signal Idler

v
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v
v

A frequency dependent measurement on d-quadrature

* A frequency dependent conditional squeezing of c-quadrature
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Proposed Configuration

KEY: Signal mode and idler mode
see different interferometer response

ETM
Current advLIGO config
+ small tuning
I'TM
Laser PRM
= :L 1 |

[TM ETM
SRM

A mega band . OpP d wot+d E/.
squeezer a ¢ W /.

(Traditional: an audio band | d‘, S A A mode cleaner separates
squeezer, L idler and signal
difficult but has been realised.)

Do correlation! D

[
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Look into: Proposed Configuration

Effective cavities

—

Signal: the same as AdvLIGO: pondermotive interaction + GW
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* Feels that the interferometer is a filter cavity
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Look into: Proposed Configuration

Input and Readout

@® What actually will be injected into the interferometer is a broadband field

/

wo 2wo+ A wo+A

® We pick up the signal/idler fields with precise local oscillator

w idler
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Theoretical Sample Sensitivity Curves

Including the loss
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Proposed Configuration

KEY: Signal mode and idler mode
see different interferometer response

ETM
Current advLIGO config
+ small tuning
I'TM
Laser PRM
= :L 1 |

[TM ETM
SRM

A mega band . OpP d wot+d E/.
squeezer a ¢ W /.

(Traditional: an audio band | d‘, S A A mode cleaner separates
squeezer, L idler and signal
difficult but has been realised.)

Do correlation! D
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Discussion

Experimental feasibility? seems there is no fundamental loophole,
but needs further investigation

Experimental group interested in making it practical:

LIGO group in MIT lead by Matthew Evans

University of Hannover, lead by Roman Schnabel

Matthew Roman
Evans Schnabel

Main limitation: only one filter cavity:

Works well only for broadband detectors (sufficient for A+, LIGO voyager, cosmic explorer)

For future narrowband detectors, more filter cavities is needed—not suitable
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Summarise

ETM
® MegaHertz squeezer produce
entanglement pairs
I'TM ® Arm cavity can be used as optical filter
Laser PRM
E [} {] ® Conditional squeezing contributes

quantum noise reduction

I'TM ETM

® A possible promising alternative approach

Do correlation! D
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