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Abstract: <p>For a spin 1/2 (a qubit), Hamiltonian evolution is equivalent to an elliptic rotation of the (Bloch) spin vector in 3D space. In contrast,
measurement alters the state norm, so may not be described as such a rotation. Nevertheless, extending the 3D spin vector to a 4D "spacetime”
representation allows weak measurements to be interpreted as hyperbolic (boost) rotations. The combined Hamiltonian and measurement dynamics
in continuous weak measurement trajectories are then equivalent to (stochastic) Lorentz transformations. Notably, in superconducting circuit QED
implementations, the choice between which type of stochastic rotation occurs may be made long after the qubit and measurement field interact.</p>
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Example: Monitored Rabi Oscillations
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UCB, Nature 511, 570 (2014)

A monitored quantum system (here a transmon qubit) has both
smooth unitary dynamics and random measurement backaction

The composite dynamics has interesting theoretical structure
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Qubits are 4-dimensional
e Qubits (e.g., spin-1/2) are 2-level quantum systems
[¥) = a|0) + B|1)

e But, qubit state space is generally 4-dimensional

p =1 (pl + z61 + yo2 + 263)

e

State norm (Conditional) Expectation values

(preparation success probability) (Bloch sphere coordinates)
(max radius of Bloch sphere) o2 e y2 i 22 = R2 < p2

Operator basis: |1><1| o lO) <0‘ Orthonormal under
Pauli operators 5-] — ’0)(1| L ‘]_)([]‘ operator inner product:
P — AB+BA
o2 = ~i(0)t]~ )0 A-B=jTs | 48484]
= [1)(1] — [0){O]
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Pauli Operators form a 3D
Clifford Algebra (for spin)

e The Clifford algebra of 3-space has 8 elements
e The 4 "grades" of the algebra correspond geometrically
to oriented subspaces of differing dimensions

Grade Geometric meaning:
3 &xa'yé'z Volume Segment
2 &yoA'z a.0. &m&y Plane Segment
1 5';13 6'y 5‘2 Line Segment

0 1 Point
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Matrix Representation of
3D Clifford Algebra

e Simplification: OA'Q,OA'yOA'Z =1l

(Representation-independent definition of "imaginary unit")

Grade Geometric meaning:
3 ’Li Volume Segment
2 ?:5'3; ié'y i@'z Plane Segment
1 5':1: &y 5‘2 Line Segment

0 1 Point
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Dot and Wedge Products

The usual Pauli operators are a faithful matrix representation,
so the matrix product is precisely the Clifford product

~ ~

AB — AB+BA | AB-BA

Symmetric part is
dot product

AB—2FBA . (A -B)l

Unit operator is an artifact of/
the matrix representation

Scalar projection
removes representation:

(4)o = 5Tr[A4]
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2

2

Antisymmetric (noncommutative)
part is wedge product

AB-BA _ } A £
AB_BA _ AAB

Hodge Star operation i T
flips grade k to (3-k): *A = —iA

Cross Product is closed
for grade 1 (vectors):

gi X 5')' = —i(&,; /\5’j) — e,-,jk_&k

(Same "noncommutativity" in classical mechanics)
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Why do we care?

For a physical spin, we expect rotations in 3D space to be relevant.
ldentifying the implicit Clifford algebra makes geometry explicit.

s Z e A spin vector can be interpreted as a true
1 Sj Uj vector in 3D space with this mapping.

Classical spin precession becomes obviously the same as the
commutator evolution generated by a Hamiltonian operator:

Z—0 <3 — S0 = [Qs—‘éﬂ] = [0, 3]
The physical correspondence of the state to
spin orientations becomes transparent:
p=1ilpl+3]  Tr[pl]=((pl+3)E) =32
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What about Measurement?

e The Clifford algebra of 3D space works for Hamiltonian
evolution, since the norm of the state never changes

e Measurement changes the state norm

e We either need nonlinear evolution (renormalization),
or we need to consider the 4th state component.

Example: ground-state projection

p — 10)(0]5[0)(0] = 25%[0)(0] = ZZ*(1 - &)
Equivalentto: p +— (p — 2)/2 2z (z—p)/2

The state norm and spin components become
intertwined by measurement (before renormalization)
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Gaussian Measurements

¢ Weak measurements provide much more intuition
about how to handle the change of the state norm

Example: Gaussian pointer r of variance V centered on z eigenvalues +/- 1

Tr[M!M,p exp(—(r—1)?/2V) exp(—(r+1)?/2V)
P(r) = TEMA _ p, [2Y) 4 p, ‘
( ) I'r[p] — vVanV T F2=-1 vanV

Measurement (Kraus) operator:

~

M, = exp| (‘l(z;vfi)i):.-'ﬂ’l — C(r) e"9:/2V C%(r) = exp( (;'”_Hy)-"?V)

State update:
p— M, pM} = C%(r)[55e */V10)(0| + 1':'3—:6?"-"‘"[1}{1

(prefactor cancels in state renormalization: neglect)

p — pcosh(r/V) + zsinh(r/V) z + zcosh(r/V') + psinh(r/V)

Hyperbolic rotation of state components in p-z plane by "rapidity" angle r/V
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4D Clifford Algebra

Rotations in planes involving the state norm are hyperbolic.
Rotations in planes not involving the state norm are elliptic.
This is equivalent to the structure of spacetime.

Note: it is simple to "upgrade" the qubit representation to this 4D "spacetime"
3D Clifford algebra is a subalgebra of the 4D Clifford algebra of spacetime
Removing matrix representation changes no physics, but clarifies correspondence

Euclidean 3D Minkowski 4D (+,-,-,-)
g1, 02, O3 e 0y Ty J25 13
of =0f =03 =1 1B=1"=7%=7=-1

Apparent 3D vectors are timelike planes in 4D
OC1=MNM% O02=77% 03 =73

Could represent 4D basis as Dirac "gamma matrices" if desired
(note vague connection to relativistic spin 1/2)
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4D Clifford Algebra

e Simplification: 1 = 010203 = Y0 Y1723
(Representation-independent definition of "imaginary unit")

(but, commutes with even grade, anti-commutes with odd grade)

Grade

4 7 2% — 16 elements

3 M0 | P i s

| . . . «— Planes (of rotation):
3 hyperbolic | 3 elliptic

0 Relative 3D space embedded
1 as even-graded subspace
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4D "Minkowski" Qubit

Drop 2D matrix representation, preserving physics in Clifford algebra:

p = 5(p1l + 261 +y62 + 263) — p = p+ o1 + yos + 203

Reinterpret algebra as embedded in 4D "spacetime":

p = (Pvo + 71+ yy2 + 273) %0 = Y0
e
Proper time direction (of agent)

Proper 4-vector
(defines relative space, and probability)

Rotations are then obvious spinor transformations of a proper 4-vector:

edt(2/2)(x01) pe—dt(R/2)(x01) — (dt(R/2)(301) o =dt(R/2)(x01)

Hamiltonian: pE
Elliptic rotation in spatial (spin) plane oy = —i01 = 7273 with spin axis o
. " /9 ' /9 . /9 , /9 .
Measurement: ed{(r , ..T)(a_;)pedr.(r, 27)(03) — edt(r,. ...T)(O'_g)ée dt(r, ..'r)(r:r,:,),),U

Hyperbolic rotation (boost) in temporal (measurement) plane o3 = 437,
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4D Matrix Representation

e While a spinor representation of 4D rotations is efficient, a
4x4 real matrix representation is also computationally useful

p—

e 853

F=F+1iB
E = (ry/T)oy + (ry/T)o2 + (r./T)03

Effective "electric field" polarizes spin

el F/2go—dt F/2

Describes continuous monitoring of all three qubit measurement axes:

iB = ()x01 + (Q)x02 + (2,)*03

Effective "magnetic field" rotates spin

0 05/T Tyl T T;/T-
P 0 -, Q,
v/t 8L 0 =il
_7';/7' -, Q 0

Lorentz rotation generator equivalent to "electromagnetic field tensor”

— exp | dt

Ne 83

arXiv:1606.01407

easily modified to add experimental inefficiencies (T1, T2, eta, etc.)
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Superconducting Qubit (3D Transmon)

b vale, PRL 107, 240501 (2011)

50 mm
Spectra and Eigenfunctions

10

\
"Qubit" is lowest two energy levels of a

‘ nonlinear oscillator
Not spin-1/2, but formalism still useful.

-10

josephson phase
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Continuous Monitoring
W|th Microwaves
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Gaussian measurement per dt

Phase-sensitive amplifier (LJPA) Distinguishable qubit states

squeezes field along information-
carrying quadrature
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Delayed

UCB, Nature 502, 211 (2013) To further
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Note the temporal progression:

Field interacts with qubit in cavity

Field leaks from cavity (unsqueezed)

Field propagates away for a delay

Amplifier phase chooses squeezed quadrature
Homodyne measures squeezed quadrature

Choice Rotations!

' v “ P
= BN

putl 3 -
- N
- r b 9

F =e%(r/7)os

/i

Phase of squeezing axis chosen
long after field escapes cavity:
type of qubit Lorentz rotation

depends on this phase!
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Causality still Preserved

Same ensemble-averaged (Lindblad) dynamics must occur regardless
of (later) choice of measurement (and collected information)
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However, the physical story told by the
observed readout will be very different
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Korotkov, arXiv:1111.4016 (2011)
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Fluctuations vs. Collapse

UCB, Nature 502, 211 (2013) To further d
a
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Story #1: \ Story #2:

The squeezing eliminates distinguishability of
qubit states, but amplifies the intrinsic

The squeezing suppresses the intrinsic photon

number uncertainty, but amplifies the field
uncertainty of the cavity field photon number. separation between distinct qubit states..
The fluctuating photon number made the The cavity photon number does not fluctuate.
qubit energy fluctuate, creating random phase Instead, continuous weak monitoring of z creates
drifts that dephase the qubit in the ensemble partial collapses that decohere the qubit in the
average (purely elliptic rotations). ensemble average (purely hyperbolic rotations).

The later choice of squeezing axis completely changes the physical picture.

20
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Fluctuations vs. Collapse
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Story #1: \ Story #2:

The squeezing eliminates distinguishability of
qubit states, but amplifies the intrinsic

The squeezing suppresses the intrinsic photon

number uncertainty, but amplifies the field
uncertainty of the cavity field photon number. separation between distinct qubit states..
The fluctuating photon number made the The cavity photon number does not fluctuate.
qubit energy fluctuate, creating random phase Instead, continuous weak monitoring of z creates
drifts that dephase the qubit in the ensemble partial collapses that decohere the qubit in the
average (purely elliptic rotations). ensemble average (purely hyperbolic rotations).

The later choice of squeezing axis completely changes the physical picture.
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Conclusions

* Two-level systems undergoing Gaussian continuous
measurement have a natural mapping to stochastic Lorentz
transformations of a 4-vector

e Circuit QED measurements have a naturally delayed choice
for which Lorentz transformations have occurred

Thank you!
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