Title: Protecting weak measurements against systematic errors

Date: Jun 10, 2016 03:00 PM

URL: http://pirsa.org/16060096

Abstract: Decoherence in quantum metrology may deviate the estimate of a parameter from the real value of the parameter. In this talk, we show how to suppress the systematic error of weak-measurement-based quantum metrology under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first order approximation of a small deviation in the probability distribution, and compare the systematic error of standard weak measurement and postselected weak measurements, which shows that the systematic error of a postselected weak measurement with a large weak value can be significantly lower than that of a standard weak measurement when the probe undergoes decoherence.

Pirsa: 16060096 Page 1/28

Protecting weak measurements against systematic error

Speaker: Shengshi Pang

University of Rochester

June 10, 2016

(4 B) (4 B) (4 B) (1 B) (9 Q (

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

1 / 23

Pirsa: 16060096 Page 2/28

Pirsa: 16060096

Outline Review of weak value amplification Maximum likelihood estimation Weak measurements with decoherence Numerical example Speaker: Shengshi Pang (University of RProtecting weak measurements against sy June 10, 2016

Pirsa: 16060096 Page 4/28

Review of weak value amplification

In a weak measurement, a typical coupling Hamiltonian between the system and the probe is

$$H_{\mathrm{int}} = gA \otimes G\delta(t - t_0),$$
 (1)

where g is small.

Suppose the initial system state $|\psi_i\rangle$, the initial probe state $|\phi\rangle$, then the joint state after the weak coupling is

$$|\Phi\rangle = \exp(-igA \otimes G)|\psi_i\rangle \otimes |\phi\rangle. \tag{2}$$

4 D > 4 D > 4 E > 4 E > 2 D 9 Q (

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Review of weak value amplification

If the system is postselected to some specific state $|\psi_f\rangle$, then the probe collapses to

$$|\phi_f\rangle = \langle \psi_f | \exp(-igA \otimes G) | \psi_i \rangle | \phi \rangle. \tag{3}$$

When g is sufficiently small,

$$|\phi_f\rangle \approx \langle \psi_f | \psi_i \rangle \exp(-igA_w G) | \phi \rangle,$$
 (4)

where A_w is the weak value¹

$$A_{w} = \frac{\langle \psi_{f} | A | \psi_{i} \rangle}{\langle \psi_{f} | \psi_{i} \rangle}. \tag{5}$$

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

¹Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60,-1351 (1988).

Review of weak value amplification

If one measures an observable \hat{M} on the collapsed probe state, then the average measurement result is

$$\langle \Delta \hat{M} \rangle \approx g \operatorname{Im} A_{w} (\langle \{G, \hat{M}\} \rangle_{D} - 2\langle G \rangle_{D} \langle \hat{M} \rangle_{D}) + i g \operatorname{Re} A_{w} \langle [G, \hat{M}] \rangle_{D}.$$

$$(6)$$

For example, if $G = \hat{p}$, and $\hat{M} = \hat{q}$, then

$$\Delta \langle \hat{q} \rangle = g \operatorname{Re} A_w + g m \operatorname{Im} A_w \left. \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{Var}(\hat{q})_{|\phi\rangle} \right|_{t \to 0},$$

$$\Delta \langle \hat{p} \rangle = 2g \operatorname{Im} A_w \left. \operatorname{Var}(\hat{p})_{|\phi\rangle} \right|_{t=0}.$$
(7)

 A_w can be very large when $|\langle \psi_f | \psi_i \rangle| \ll 1$, so $\langle \Delta \hat{M} \rangle$ can be very large.

マロメスタメモンスE> モータの(

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

- Given a g-dependent probability distribution $P_g: p_k(g), k = 1, \dots, d$, we want to estimate g.
- MLE is finding the most likely g conditioned on the observation results as the estimate for g.
- Suppose we observe the result k a total of N_k times in an experiment. Likelihood function: $\mathcal{L} = \prod_k p_k^{N_k}(g)$, or alternatively its logarithm $\log \mathcal{L} = \sum_k N_k \log p_k(g)$.
- Maximization of L leads to

$$\partial_{g} \log \mathcal{L} \approx \sum_{k} N_{k} \frac{\partial_{g} p_{k}(g)}{p_{k}(g)} = 0. \tag{8}$$

4 □ > 4 률 > 4 분 > 4 분 > 1

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

In the presence of noise, the real probability distribution observed in experiments may be $P_{g_0}^{\exp}: p_k^{\exp}(g), \ k=1,\cdots,d$, which can slightly deviate from $p_k(g)$.

Thus, the estimate of g will generally deviate from the *true value* g_0 , i.e., a systematic error may occur in this case.

3

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

8 / 23

Pirsa: 16060096

Suppose $p_k^{\exp}(g)=p_k(g)+q_k(g),\ k=1,\cdots,d,$ where $|q_k(g)|\ll 1$, and $\sum_k q_k(g)=0$.

In this case,

$$\sum_{k} (p_{k}(g_{0}) + q_{k}(g_{0})) \frac{\partial_{g} p_{k}(g)}{p_{k}(g)} = 0.$$
 (9)

If we expand $\frac{\partial_g p_k(g)}{p_k(g)}$ to the first order of δg , then

$$\sum_{k} (p_k(g_0) + q_k(g_0)) \left(\left. \frac{\partial_g p_k(g)}{p_k(g)} \right|_{g=g_0} + \delta g \left. \frac{p_k(g) \partial_g^2 p_k(g) - (\partial_g p_k(g))^2}{p_k^2(g_0)} \right|_{g=g_0} \right) = 0.$$
(10)

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Suppose $p_k^{\exp}(g) = p_k(g) + q_k(g), \ k = 1, \cdots, d$, where $|q_k(g)| \ll 1$, and $\sum_k q_k(g) = 0$.

In this case,

$$\sum_{k} (p_{k}(g_{0}) + q_{k}(g_{0})) \frac{\partial_{g} p_{k}(g)}{p_{k}(g)} = 0.$$
 (9)

If we expand $\frac{\partial_g P_k(g)}{P_k(g)}$ to the first order of δg , then

$$\sum_{k} (p_k(g_0) + q_k(g_0)) \left(\frac{\partial_g^{\oplus} p_k(g)}{p_k(g)} \Big|_{g=g_0} + \delta g \frac{p_k(g) \partial_g^2 p_k(g) - (\partial_g p_k(g))^2}{p_k^2(g_0)} \Big|_{g=g_0} \right) = 0.$$
(10)

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Up to the first order of $|q_k(g)|$, we get

$$\delta g = -\frac{\partial_g \mathcal{D}(P_{g_0}^{\text{exp}}||P_g)|_{g=g_0}}{\mathcal{F}(P_{g_0})},$$
(11)

where $\mathcal{D}(P_{g_0}^{\mathrm{exp}}||P_g)$ is the relative entropy between $P_{g_0}^{\mathrm{exp}}$ and P_g ,

$$\mathcal{D}(P_{g_0}^{\text{exp}}||P_g) = \sum_{k} p_k^{\text{exp}}(g_0) \log \frac{p_k^{\text{exp}}(g_0)}{p_k(g)}, \tag{12}$$

and $\mathcal{F}(P_g)$ is the Fisher information of the probability distribution P_g at $g=g_0$,

$$\mathcal{F}(P_{g_0}) = \sum_{k} \left. \frac{(\partial_g p_k(g))^2}{p_k(g)} \right|_{g=g_0}. \tag{13}$$

4 □ > 4 ∰ > 4 분 > 4 분 > 1분 의 약약

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Cramér-Rao bound and systematic error

The Cramér-Rao bound tells us that

$$\langle \delta g^2 \rangle \ge \frac{1}{\underbrace{\mathcal{N}\mathcal{F}_g}} + \underbrace{\langle \delta g \rangle^2}_{\text{Systematic error}}.$$
 (14)

Two implications:

- Systematic errors cannot be reduced simply by increasing the number of measurements, as random noise is usually treated.
- If weak value amplification can reduce the systematic error, the low postselection probability will not affect it.

4 □ > 4 ∰ > 4 분 > 4 분 > 1분 | 원익으

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

When the pointer undergoes decoherence, a typical interaction Hamiltonian is

$$H_I = gA \otimes G\delta(t - t_0) + \epsilon_D H_{DE}, g, \epsilon_D \ll 1,$$
 (15)

where $g, \epsilon_D \ll 1$.

Suppose the initial states of the system, the probe and the environment are ρ_S , ρ_D , ρ_E . After a short time $t \ll 1$, if $\epsilon_D = 0$, the joint state is approximately

$$\rho_{SDE}(t) = (\rho_S \otimes \rho_D - ig[A \otimes G, \, \rho_S \otimes \rho_D]) \otimes \rho_E. \tag{16}$$

And in the presence of decoherence, the joint state is

$$\rho_{SDE}^{\mathsf{exp}}(t) = \rho_{SDE}(t) - \mathrm{i}t[\epsilon_D H_{DE}, \, \rho_S \otimes \rho_D \otimes \rho_E]. \tag{17}$$

4 □ > 4 레 > 4 분 > 4 분 > 1 분 의 약

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Standard weak measurement

When there is no postselection on the system in the weak measurement, the probe state after time t is

$$\rho_D(t) \approx \rho_D - ig\langle A \rangle_i [G, \, \rho_D], \tag{18}$$

and in the presence of decoherence,

$$\rho_D^{\mathsf{exp}}(t) = \rho_D(t) - \mathrm{i}t\epsilon_D[H_D', \, \rho_D],\tag{19}$$

where

$$H_D' = \operatorname{Tr}_E(\tilde{H}_{DE}\rho_E). \tag{20}$$

If we measure an orthonormal basis $\{|k\rangle\}$ on the probe, the probability distribution in the decoherence-free case is

$$p_k(g) = \langle k | \rho_D | k \rangle - ig \langle A \rangle_i \langle k | [G, \rho_D] | k \rangle, \tag{21}$$

and in the presence of decoherence,

$$p_k^{\mathsf{exp}}(g) = p_k(g) - \mathrm{i}\epsilon_D t \langle k | [H'_D, \rho_D] | k \rangle. \tag{22}$$

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Standard weak measurement

Then,

$$\partial_{g} \mathcal{D}(P_{g_{0}}^{\exp}||P_{g})|_{g=g_{0}} \approx -4\epsilon_{D} t \langle A \rangle_{i} \sum_{k} \langle k|\rho_{D}|k \rangle \operatorname{Im} H_{Dw}^{\prime(k)} \operatorname{Im} G_{w}^{(k)},$$

$$\mathcal{F}(P_{g_{0}}) \approx 4\langle A \rangle_{i}^{2} \sum_{k} \langle k|\rho_{D}|k \rangle \operatorname{Im}^{2} G_{w}^{(k)},$$
(23)

where

$$G_w^{(k)} = \frac{\langle k | G \rho_D | k \rangle}{\langle k | \rho_D | k \rangle}, \ H_{Dw}^{\prime(k)} = \frac{\langle k | H_D^{\prime} \rho_D | k \rangle}{\langle k | \rho_D | k \rangle}, \tag{24}$$

Therefore, the systematic error δg_n of the standard weak measurement is approximately

$$\delta g_{n} \approx \frac{\epsilon_{D} t \sum_{k} \langle k | \rho_{D} | k \rangle \operatorname{Im} H_{Dw}^{\prime(k)} \operatorname{Im} G_{w}^{(k)}}{\langle A \rangle_{i} \sum_{k} \langle k | \rho_{D} | k \rangle \operatorname{Im}^{2} G_{w}^{(k)}}.$$
(25)

peaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Standard weak measurement

Then,

$$\partial_{g} \mathcal{D}(P_{g_{0}}^{\exp}||P_{g})|_{g=g_{0}} \approx -4\epsilon_{D} t \langle A \rangle_{i} \sum_{k} \langle k|\rho_{D}|k \rangle \operatorname{Im} H_{Dw}^{\prime(k)} \operatorname{Im} G_{w}^{(k)},$$

$$\mathcal{F}(P_{g_{0}}) \approx 4\langle A \rangle_{i}^{2} \sum_{k} \langle k|\rho_{D}|k \rangle \operatorname{Im}^{2} G_{w}^{(k)},$$
(23)

where

$$G_w^{(k)} = \frac{\langle k | G \rho_D | k \rangle}{\langle k | \rho_D | k \rangle}, \ H_{Dw}^{\prime(k)} = \frac{\langle k | H_D^{\prime} \rho_D | k \rangle}{\langle k | \rho_D | k \rangle}, \tag{24}$$

Therefore, the systematic error δg_n of the standard weak measurement is approximately

$$\delta g_{n} \approx \frac{\epsilon_{D} t \sum_{k} \langle k | \rho_{D} | \underline{k} \rangle \operatorname{Im} H_{Dw}^{\prime(k)} \operatorname{Im} G_{w}^{(k)}}{\langle A \rangle_{i} \sum_{k} \langle k | \rho_{D} | k \rangle \operatorname{Im}^{2} G_{w}^{(k)}}.$$
(25)

peaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Pirsa: 16060096 Page 18/28

Postselected weak measurement

Suppose the system is postselected to $|\psi_f\rangle$.

The pointer state after the postselection without decoherence is

$$\rho_D(t) \propto \rho_D - ig \operatorname{Re} A_w^{G, \rho_D} + g \operatorname{Im} A_w \{G, \rho_D\}.$$
 (26)

In the presence of decoherence on the probe,

$$\rho_D^{\mathsf{exp}}(t) \propto \rho_D - \mathrm{i} g \mathrm{Re} A_w[G, \, \rho_D] + g \mathrm{Im} A_w\{G, \, \rho_D\} - \mathrm{i} \epsilon_D t[H_D', \rho_D]. \quad (27)$$

If we measure along an orthonormal basis $\{|k\rangle\}$ on the probe, the probability distribution of the measurement results in the decoherence-free case is

$$\rho_k(g) = \langle k | \rho_D | k \rangle [1 + 2g \operatorname{Im}(A_w G_w^{(k)})]. \tag{28}$$

And in the presence of decoherence,

$$p_k^{\mathsf{exp}}(g) = p_k(g) + 2\langle k | \rho_D | k \rangle t \epsilon_D \mathrm{Im} H_{Dw}^{\prime(k)}. \tag{29}$$

peaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Postselected weak measurement

In the weak interaction limit $g \ll 1$,

$$\partial_{g} \mathcal{D}(P_{g_{0}}^{\exp}||P_{g})|_{g=g_{0}} \approx 4t \sum_{k} \langle k|\rho_{D}|k\rangle \epsilon_{D} \operatorname{Im} H_{Dw}^{\prime(k)} \operatorname{Im} (A_{w} G_{w}^{(k)})$$

$$\mathcal{F}(P_{g_{0}}) \approx 4 \sum_{k} \langle k|\rho_{D}|k\rangle \operatorname{Im}^{2}(A_{w} G_{w}^{(k)}). \tag{30}$$

Therefore, the systematic error δg_p is

$$\delta g_{p} \approx \frac{\epsilon_{D} t \sum_{k} \langle k | \rho_{D} | k \rangle \operatorname{Im} H_{Dw}^{\prime(k)} \operatorname{Im} (A_{w} G_{w}^{(k)})}{\sum_{k} \langle k | \rho_{D} | k \rangle \operatorname{Im}^{2} (A_{w} G_{w}^{(k)})}.$$
(31)

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Postselected weak measurement

- If we know H'_D , we can choose a basis $\{|k\rangle\}$ for the measurement on the probe such that all $H'^{(k)}_{Dw}$ are real, thus $\mathrm{Im} H'^{(k)}_{Dw} = 0$ for all k, and δg_n (and δg_p) would be approximately zero. This is a simpler way to suppress the systematic error.
- However, in practice, one generally does not have complete information about the decoherence. The method proposed above, which is based on the weak value amplification, only requires a large weak value A_w , regardless of the details of the decoherence. This method is universal.

(4 m) (4 🗗) (4 분) (4 분) (2 년) (9 Q(

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Suppose the total Hamiltonian for the system, probe, and environment is

$$H = g\sigma_S^z \otimes \sigma_D^z \delta(t - t_0) + \epsilon_D \sigma_D^y \otimes b^{\dagger} b, \ g, \ \epsilon_D \ll 1$$
 (32)

Suppose the system and the probe are initially in $|\psi_i\rangle$ and $|D\rangle$, and that the environment is initially in the thermal equilibrium state ρ_E ,

$$\rho_E = \frac{1}{Z} \exp(-\beta b^{\dagger} b), \ \beta = \frac{\omega}{kT}, \tag{33}$$

After a short time t, the joint state of the system and probe evolves to

$$\rho_{SD} = \frac{1}{Z} \sum_{n} e^{-i\beta n} |\Phi_f^{(n)}\rangle \langle \Phi_f^{(n)}|, \qquad (34)$$

where $|\Phi_f^{(n)}\rangle$ is

 $|\Phi_f^{(n)}\rangle = \exp[-\mathrm{i}(g\sigma_S^z \otimes \sigma_D^z + tn\epsilon_D\sigma_D^y)]|\psi_i\rangle|D\rangle. \tag{35}$

(4 B > 4 🗗 > 4 분 > 4 분 > - 분 - 쒼익(

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Let $|\psi_i\rangle = |+\rangle$ and $|D\rangle = |+\rangle$ as the initial states for the system and the probe. The postselected state of the system is

$$|\psi_f\rangle = \exp\left(-\mathrm{i}\delta\sigma_S^y\right)|-\rangle,\ \delta \ll 1.$$
 (36)

The weak value of σ_z is

$$(\sigma_S^z)_w = \frac{\langle \psi_f | \sigma_S^z | \psi_i \rangle}{\langle \psi_f | \psi_i \rangle} = \cot \delta, \tag{37}$$

which is approximately $1/\delta$ when $\delta \ll 1$. The measurement basis that we choose on the probe is

$$|k'\rangle = e^{-i\theta\sigma^{x}}|k\rangle, \ k = 0, 1,$$
 (38)

where θ is a parameter to adjust.

- 4 B > 4 🗗 > 4 분 > 4 분 > - 분 - 约Q()

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Ratio of systematic error for different δ

Figure: Ratio between the systematic error with and without postselection with varying δ . $\beta=1.0$, $\theta=\frac{\pi}{8}$, $g=1.0\times 10^{-5}$, $\epsilon_D^i=1.0\times 10^{-5}$.

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Ratio of systematic error for different g

Figure: Ratio between the systematic error with and without postselection for different g. $\beta=1.0$, $\theta=\frac{\pi}{8}$, $\delta=1.0\times 10^{-3}$, $\epsilon_D^i=1.0\times 10^{-5}$.

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

21 / 23

Pirsa: 16060096 Page 25/28

Ratio of systematic error for different ϵ_D

Figure: Ratio between the systematic error with and without postselection for different ϵ_D . $\beta=1.0$, $\theta=\frac{\pi}{8}$, $\delta=1.0\times10^{-3}$, $g=1.0\times10^{-5}$.

Speaker: Shengshi Pang (University of RProtecting weak measurements against sy

June 10, 2016

Pirsa: 16060096 Page 27/28

Pirsa: 16060096 Page 28/28