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Bell-CHSH 1nequality:
‘(1[’((1_,/7)*'( ‘14(("’/‘) r)+( 1[‘((,!:/))_( ‘[‘((f’,/‘) f)| S 2

for any “local” correlations (', (a,b) etc.
(Measurements of @, a', b and b yield +1.)

J.S. Bell, Physics 1, 195 (1964);
J. F. Clauser, M. A. Horne, A. Shimony, and
R. A. Holt, Phys. Rev. Lett. 23, 880 (1969)
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Tsirelson’s bound:

Cpa,by+Cola,b)+Cya',b)~Cola'b")| < 22

B. S. Tsirelson, Lett. Math. Phys. 4, 93 (1980)
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Tsirelson’s bound
Cpa,by+Cola,b)+Cya',b)~Cola'b")| < 22

1S a theorem of quantum mechanics.

B. S. Tsirelson, Lett. Math. Phys. 4, 93 (1980)
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“Maximally nonlocal” or “PR-box”’correlations:

Cpp(a,b)+Cpp(a,b)+Cpp(a’,b)—Cpp(a’,b"| < 4

*Take Cpp(a,b) = Cpp(a,b") = Cpp(a’,b) =1
and (‘[)R(Cf’,h J|’) = _l .

*For any measurement of a, ¢', b, and /',
outcomes £1 are equally likely.

S. Popescu and D. Rohrlich,
Found. Phys. 24, 379 (1994)
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“Maximally nonlocal” or “PR-box”’correlations:

|Cpp(a,b)+Cpp(a,bN)+Cpp(a’,b)—Cpp(a’,b")| < 4

.Take (T}‘J[e((,_,/)) = (‘f"R(”‘h r) = (‘/)R(U’.,b) = l
and (‘[)R(Cf’,/‘) J|') = _l .

*For any measurement of ¢, &', b, and ',
outcomes £1 are equally likely.

So why aren’t quantum correlations

Bob | more nonlocal than they are? Alice
measures measures
bhor b’ aora'
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PR-box correlations:

Suppose Alice measures a.
She knows that b = 5"
Suppose Alice measures a'.
She knows that H =—-b".

Alice can even prepare an ensemble (e.g. by measuring ¢ and
postselecting « = 1) in whichh=1=5h"and Ab =0=Ab".

Pirsa: 16060093 Page 7/31



PR-box correlations:

All that stops Alice from signalling to Bob 1s complementarity
between Bob’s measuring 5 and his measuring 5" — Bob cannot
measure both — even though (from Alice’s point of view) no
uncertainty principle governs » and 5’
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PR-box correlations:

All that stops Alice from signalling to Bob 1s complementarity
between Bob’s measuring 5 and his measuring »'— Bob cannot
measure both — even though (from Alice’s point of view) no
uncertainty principle governs » and 5’

Complementarity 1s a for the PR box.
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But quantum mechanics has a classical limit. In this limit there
are no non-commuting observables; there are only jointly
measurable macroscopic observables. This classical limit — our
direct experience — 1s an inherent constraint, a kind of boundary
condition, on quantum mechanics and on any generalization of
quantum mechanics. Thus stronger-than-quantum correlations,
too, must have a classical limit.
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But quantum mechanics has a classical limit. In this limit there
are no non-commuting observables; there are only jointly
measurable macroscopic observables. This classical limit — our
direct experience — is an inherent constraint, a kind of boundary
condition, on quantum mechanics and on any generalization of
quantum mechanics. Thus stronger-than-quantum correlations,
too, must have a classical limit.

And now begins the fun...!
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PR-box correlations 1n the classical limit:

Now suppose Alice measures just a or just @’ on N pairs.
pp J J p

Define macroscopic observables B and B":

B:b1+b2+...+b‘\. B,:b{+b§+_.+b"\.

N N

There must be “weak” measurements that Bob can make to
obtain partial information about both B and B’, because there
is no complementarity in the classical limit! On average both
B and B’ vanish, but if Alice measures a, B and B’ will of order
I/NN and correlated: if she measures a', B and B’ will of order
I/NN and anti-correlated.

Page 12/31



Pirsa: 16060093

Ultimately, Alice will be able to signal to Bob by consistently
measuring a or a’. What matters 1s only that when Bob detects
a correlation, 1t 1s more likely that Alice measured a than when
he detects an anti-correlation. If not, Bob's measurements yield
zero information about B or about B’, contradicting the axiom
of a classical limit in which B and B’ are jointly measurable.

Alice and Bob can measure exponentially many pairs (in
groups of N). Their expenses and exertions don’t concern

us. For example, if Alice measures a consistently, then the
probability for Bob to obtain B=11s 2. But the probability
for Bob to obtain B =1 and B'= 1 1s also 2" and not 22",
The probability for Bob to obtain B = 1 and B' = —1 vanishes.
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Conclusion (interim):

The requirement of a classical limit 1s a natural and minimal
axiom that, together with relativistic causality, rules out PR-box
correlations.

D. R., PR-box correlations have no classical limit, in Quantum Theory: A Two-Time
Success Story | Yakir Aharonov Festschrift], eds. D. C. Struppa and J. M. Tollaksen
(Milan: Springer), 2013, pp. 205-211..
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Alternative proof:

[f Alice measures a consistently, then » — 5" = 0 identically, and
b+ b' 1s distributed binomially. If she measures a' consistently,
then b + "= 0 1dentically, and b — b’ 1s distributed binomially.
Thus Bob can detect Alice’s signal by measuring the variances

[A(B + B")]? and [A(B — B")]>. Since (B)=0=(B'), we have

[AB + B> = <(B+B’)3> and [A(B - B> = <(B—B')3>_
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“Stronger than quantum” correlations:

2V2 < Cyp(a,b)+Cpla,b)+Cpla',b)~Csola',b)| < 4

*For any measurement of a, &', b, and /',

outcomes £1 are equally likely.
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“Stronger than quantum” correlations:

742 < (‘.S'(_)("alj)+(‘.S'(_)(”’/) ')‘I‘("g-(_)(u',b)_(‘.S'(_)(”',B N <4

*For any measurement of @, &', b, and 5’,

outcomes £1 are equally likely.

ob h Alice

measures measures
b or b’ aora'
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Relativistic causality imposes a constraint:

[f Alice measures @ consistently, then the standard deviation in
B + B'that Bob observes 1s A (B + B').

If Alice measures a’ consistently, then the standard deviation in
B + B'that Bob observes 1s A (B + B').

Bob must not be able to detect what Alice measures, hence
relativistic causality implies that

A(B+BY=AB+B .
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But how do we calculate A (B + B")and A (B = B")?

Whatever Alice measures, we have

<(B+B’)3>+<(B—B’)3>=2<BZ>+2<(B’)3>=% ,
since
N /7[2 o P & /7‘\.2 | (blr)2 Tt (b‘\")2 "o
) e oe) 1 (@) 0)
Therefore [A (B + B")]? = [A (B + B")]%= %— [A (B - B2,

e [AB+ B)E+[AAB-B)]2= -
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But how do we calculate A (B + B")and A (B = B")?

Whatever Alice measures, we have
<(B+ B’)3>+<(B—B’)3>=2<b’3>+2<(8’)3> =% ,

since

ey e )1 (B )+t (07) @)

l
N* N N*

Therefore [A (B + B")]> = [A_ (B + B")] > - [A B -B"]?,

_ 4
N

e, [AB+ B)E+[AAB-B)]2= -
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Let us now define 4 = (a, + a, + ... + ay)/N and compare the
distribution of 4 as measured by Alice with the distribution of
B + B'as measured by Bob.

The distribution of A 1s a simple binomial. The possible values
of Aare I, 1-2/N,..., 1-2n/N,..., —1+2/N, —1 with probabilities
N!/2¥n\(N—n)! respectively.

In contrast, we can only estimate the values of B + B". for
example, when Alice obtains 1, then Bob obtains approximately
the value B + B'= Cg,(a,bh) + Cyy(a,b") . In general, if Alice
obtains 1-2#/N, then Bob obtains

B+ B'=( ]—2n/N)[('SQ(u,/7) + (TSQ(U,/? ]
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Let us now define 4 = (a, + a, + ... + ay)/N and compare the
distribution of 4 as measured by Alice with the distribution of
B + B'as measured by Bob.

The distribution of A 1s a simple binomial. The possible values
of Aare I, 1-2/N,..., 1-2n/N,..., —1+2/N, —1 with probabilities
N!/2¥n!(N—n)! respectively.

In contrast, we can only estimate the values of B + B". for
example, when Alice obtains 1, then Bob obtains approximately
the value B + B'= Cg,(a,bh) + Cyy(a,b") . In general, if Alice
obtains 1-2#/N, then Bob obtains

B + B'= (1-2n/N)[Cp(a,b) + Cgp(a,b")]
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The fact that
B+ B'=(1-2n/N)[( w(u h) + ( .,O(u b")]

(with = and not =) means that we can only write

Na,b) + ( \()(” b")] AA

AB+B") = [C;
=[C. )(u b) + Cspla,b’ ]/\/N
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The fact that
B + B'= (1-2n/N)[Cgp(a,b) + Cgp(a,b’)]

(with = and not =) means that we can only write

A(B+ B")=[Cg(a,b) + ( w(" b"] A4
= [C. )((I b) + Cspla,b’ ]/\/N )

and similarly

A (B—-B" (a',b) — Cspla',b)] A4’

[Cs
[ )(U h) s()((f b' ]/\/N

i1V

Page 25/31



Remember

[A(B+ B"]?+[A(B—-B"]>=4/N |,
hence, given

[A(B + B)P = [Cyplarb) + Csglab VPN
and

[AAB - B = [Copla’,b) = Csa' bYPIN
we get

4= [(‘sg_)(”a/’) + (‘.S‘(_)(”ﬂh!)]z T [(‘S(_)(”f»h) - (‘S(_)(”’a/’ )
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But how do we calculate A (B + B")and A (B = B")?

Whatever Alice measures, we have

<(B+B’)3>+<(B—B’)3>=2<b’3>+2<(8’)3>=% ,
since
N e O B R A (O .
<B>_ N2 _N_ N2 _<(B)>

Therefore [A (B + B')]> = [A (B + B")]2= —— [A{B - B")]?,

4
N

e [AB + B)E+[AAB-B)]2= -
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Remember

[A(B + B> +[AAB - B> =4/N |
hence, given

[A/B+ BYP > [Colah) + Cogla.b)PIN
and

[AAB — B) = [Cyp(a’,b) — Cspla'bYPIN
we get

42 [(‘:,-(_)(Chh) T (‘.S‘(_)(“»h’)]z T [(‘.‘s'(_)(”fah) - (‘S(_)(”’ab )
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Applying the inequality
(X2 + )12 > |x + y| A2

to
4= [(‘sg_)(‘hh) T ('.S'Q(U»/”)]z T [(‘.s'g)(ufﬁ/’) - (‘S(_)(U’J’ 0]

we finally obtain Tsirelson’s bound:

22> |Csola,b) + Cspla,b’) + Cspla’,b) — Cspla',b')|
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Applying the inequality
(X2 + )12 > |x + y| A2

to

4= [(‘S(_)(”ah) + (‘.5':;)((”/7’)]2 T [(‘.s'(_)(”f»/’) - (‘S(_)(”:b )

we finally obtain Tsirelson’s bound

2V2 > [Cspl@b) + Csplab’) + Cspla’b) = Cspla',b)

as a consequence of relativistic causality in the classical limit.
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Conclusion:

The requirement of a classical limit is a natural and minimal
axiom that, together with relativistic causality, rules out PR-box
correlations.

D. R., PR-box correlations have no classical limit, in Quantum Theory: A Two-Time

Success Story [ Yakir Aharonov Festschrift], eds. D. C. Struppa and J. M. Tollaksen
(Milan: Springer), 2013, pp. 205-211.

Further analysis of these two axioms yields a theorem of
quantum mechanics: Tsirelson’s bound. It also points to the
Hilbert-space structure of quantum mechanics.

D.R., Stronger-than-quantum bipartite correlations violate relativistic causality in
the classical limit, arXiv:1408.3125.
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