Title: The physical meaning of Tsirelson's bound

Date: Jun 08, 2016 03:30 PM

URL: http://pirsa.org/16060093

Abstract:

Bell-CHSH inequality:

$$|C_L(a,b)+C_L(a,b')+C_L(a',b)-C_L(a',b')| \le 2$$

for any "local" correlations $C_L(a,b)$ etc. (Measurements of a, a', b and b' yield ± 1 .)

J. S. Bell, *Physics* **1**, 195 (1964); J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, *Phys. Rev. Lett.* **23**, 880 (1969)

Alice measures *a* or *a'*

drawings by Tom Oreb © Walt Disney Co.

Tsirelson's bound:

$$|C_{Q}(a,b)+C_{Q}(a,b')+C_{Q}(a',b)-C_{Q}(a',b')| \le 2\sqrt{2}$$

B. S. Tsirelson, Lett. Math. Phys. 4, 93 (1980)

Alice measures *a* or *a'*

Tsirelson's bound

$$|C_{Q}(a,b)+C_{Q}(a,b')+C_{Q}(a',b)-C_{Q}(a',b')| \le 2\sqrt{2}$$

is a theorem of quantum mechanics.

B. S. Tsirelson, Lett. Math. Phys. 4, 93 (1980)

Alice measures *a* or *a'*

"Maximally nonlocal" or "PR-box" correlations:

$$|C_{PR}(a,b)+C_{PR}(a,b')+C_{PR}(a',b)-C_{PR}(a',b')| \le 4$$

•Take $C_{PR}(a,b) = C_{PR}(a,b') = C_{PR}(a',b) = 1$ and $C_{PR}(a',b') = -1$.

•For any measurement of a, a', b, and b', outcomes ± 1 are equally likely.

S. Popescu and D. Rohrlich, *Found. Phys.* **24**, 379 (1994)

drawings by Tom Oreb © Walt Disney Co.

Alice measures *a* or *a'*

"Maximally nonlocal" or "PR-box" correlations:

$$|C_{PR}(a,b)+C_{PR}(a,b')+C_{PR}(a',b)-C_{PR}(a',b')| \le 4$$

•Take $C_{PR}(a,b) = C_{PR}(a,b') = C_{PR}(a',b) = 1$ and $C_{PR}(a',b') = -1$.

•For any measurement of a, a', b, and b', outcomes ± 1 are equally likely.

So why aren't quantum correlations *more* nonlocal than they are?

drawings by Tom Oreb © Walt Disney Co.

Alice measures *a* or *a'*

PR-box correlations:

Suppose Alice measures *a*.

She knows that b = b'.

Suppose Alice measures a'.

She knows that b = -b'.

Alice can even prepare an ensemble (e.g. by measuring a and postselecting a = 1) in which b = 1 = b' and $\Delta b = 0 = \Delta b'$.

Pirsa: 16060093 Page 7/31

PR-box correlations:

All that stops Alice from signalling to Bob is *complementarity* between Bob's measuring b and his measuring b' – Bob cannot measure both – even though (from Alice's point of view) no uncertainty principle governs b and b'.

Pirsa: 16060093 Page 8/31

PR-box correlations:

All that stops Alice from signalling to Bob is *complementarity* between Bob's measuring b and his measuring b' – Bob cannot measure both – even though (from Alice's point of view) no uncertainty principle governs b and b'.

Complementarity is a

for the PR box.

Pirsa: 16060093 Page 9/31

But quantum mechanics has a classical limit. In this limit there are no non-commuting observables; there are only jointly measurable macroscopic observables. This classical limit – our direct experience – is an inherent constraint, a kind of boundary condition, on quantum mechanics and on any generalization of quantum mechanics. Thus stronger-than-quantum correlations, too, must have a classical limit.

Pirsa: 16060093 Page 10/31

But quantum mechanics has a classical limit. In this limit there are no non-commuting observables; there are only jointly measurable macroscopic observables. This classical limit – our direct experience – is an inherent constraint, a kind of boundary condition, on quantum mechanics and on any generalization of quantum mechanics. Thus stronger-than-quantum correlations, too, must have a classical limit.

And now begins the fun...!

Pirsa: 16060093 Page 11/31

PR-box correlations in the classical limit:

Now suppose Alice measures just a or just a' on N pairs.

Define macroscopic observables B and B':

$$B = \frac{b_1 + b_2 + \dots + b_N}{N} \quad , \quad B' = \frac{b_1' + b_2' + \dots + b_N'}{N} \quad .$$

There must be "weak" measurements that Bob can make to obtain partial information about *both* B and B', because *there* is no complementarity in the classical limit! On average both B and B' vanish, but if Alice measures a, B and B' will of order $1/\sqrt{N}$ and *correlated*; if she measures a', B and B' will of order $1/\sqrt{N}$ and *anti-correlated*.

Pirsa: 16060093 Page 12/31

Ultimately, Alice will be able to signal to Bob by consistently measuring a or a'. What matters is only that when Bob detects a correlation, it is more likely that Alice measured a than when he detects an anti-correlation. If not, Bob's measurements yield zero information about B or about B', contradicting the axiom of a classical limit in which B and B' are jointly measurable.

Alice and Bob can measure exponentially many pairs (in groups of N). Their expenses and exertions don't concern us. For example, if Alice measures a consistently, then the probability for Bob to obtain B = 1 is 2^{-N} . But the probability for Bob to obtain B = 1 and B' = 1 is also 2^{-N} and not 2^{-2N} . The probability for Bob to obtain B = 1 and B' = 1 vanishes.

Pirsa: 16060093 Page 13/31

Conclusion (interim):

The requirement of a classical limit is a *natural* and *minimal* axiom that, together with relativistic causality, rules out PR-box correlations.

D. R., <u>PR-box correlations have no classical limit</u>, in <u>Quantum Theory: A Two-Time Success Story</u> [Yakir Aharonov Festschrift], eds. D. C. Struppa and J. M. Tollaksen (Milan: Springer), 2013, pp. 205-211..

Pirsa: 16060093 Page 14/31

Conclusion (interim):

The requirement of a classical limit is a *natural* and *minimal* axiom that, together with relativistic causality, rules out PR-box correlations.

D. R., <u>PR-box correlations have no classical limit</u>, in <u>Quantum Theory: A Two-Time Success Story</u> [Yakir Aharonov Festschrift], eds. D. C. Struppa and J. M. Tollaksen (Milan: Springer), 2013, pp. 205-211..

Pirsa: 16060093 Page 15/31

Alternative proof:

If Alice measures a consistently, then b - b' = 0 identically, and b + b' is distributed binomially. If she measures a' consistently, then b + b' = 0 identically, and b - b' is distributed binomially.

Thus Bob can detect Alice's signal by measuring the variances

$$[\Delta(B+B')]^2$$
 and $[\Delta(B-B')]^2$. Since $\langle B \rangle = 0 = \langle B' \rangle$, we have

$$[\Delta(B+B')]^2 = \langle (B+B')^2 \rangle \text{ and } [\Delta(B-B')]^2 = \langle (B-B')^2 \rangle.$$

"Stronger than quantum" correlations:

$$2\sqrt{2} < C_{SQ}(a,b) + C_{SQ}(a,b') + C_{SQ}(a',b) - C_{SQ}(a',b') | \le 4$$

•For any measurement of a, a', b, and b', outcomes ± 1 are equally likely.

Alice measures a or a'

drawings by Tom Oreb © Walt Disney Co.

Pirsa: 16060093 Page 17/31

"Stronger than quantum" correlations:

$$2\sqrt{2} < C_{SQ}(a,b) + C_{SQ}(a,b') + C_{SQ}(a',b) - C_{SQ}(a',b') | \le 4$$

•For any measurement of a, a', b, and b', outcomes ± 1 are equally likely.

Alice

measures

a or *a*′

drawings by Tom Oreb © Walt Disney Co.

Relativistic causality imposes a constraint:

If Alice measures a consistently, then the standard deviation in B + B' that Bob observes is $\Delta_a(B + B')$.

If Alice measures a' consistently, then the standard deviation in B + B' that Bob observes is $\Delta_{a'}(B + B')$.

Bob must not be able to detect what Alice measures, hence relativistic causality implies that

$$\Delta_a(B+B')=\Delta_a(B+B') .$$

Pirsa: 16060093 Page 19/31

But how do we calculate $\Delta_a(B \pm B')$ and $\Delta_a(B \pm B')$?

Whatever Alice measures, we have

$$\langle (B+B')^2 \rangle + \langle (B-B')^2 \rangle = 2 \langle B^2 \rangle + 2 \langle (B')^2 \rangle = \frac{4}{N}$$
,

since

$$\langle B^2 \rangle = \frac{\langle b_1^2 \rangle + \dots + \langle b_N^2 \rangle}{N^2} = \frac{1}{N} = \frac{\langle (b_1')^2 \rangle + \dots + \langle (b_N')^2 \rangle}{N^2} = \langle (B')^2 \rangle$$

Therefore
$$[\Delta_a(B+B')]^2 = [\Delta_a(B+B')]^2 = \frac{4}{N} - [\Delta_a(B-B')]^2$$
,

i.e.
$$[\Delta_a(B+B')]^2 + [\Delta_a(B-B')]^2 = \frac{4}{N}$$
.

But how do we calculate $\Delta_a(B \pm B')$ and $\Delta_a(B \pm B')$?

Whatever Alice measures, we have

$$\langle (B+B')^2 \rangle + \langle (B-B')^2 \rangle = 2 \langle B^2 \rangle + 2 \langle (B')^2 \rangle = \frac{4}{N}$$
,

since

$$\langle B^2 \rangle = \frac{\langle b_1^2 \rangle + \dots + \langle b_N^2 \rangle}{N^2} = \frac{1}{N} = \frac{\langle (b_1')^2 \rangle + \dots + \langle (b_N')^2 \rangle}{N^2} = \langle (B')^2 \rangle$$

Therefore
$$\left[\Delta_a(B+B')\right]^2 = \left[\Delta_a(B+B')\right]^2 = \frac{4}{N} - \left[\Delta_a(B-B')\right]^2$$
, i.e. $\left[\Delta_a(B+B')\right]^2 + \left[\Delta_a(B-B')\right]^2 = \frac{4}{N}$.

i.e.
$$[\Delta_a(B+B')]^2 + [\Delta_{a'}(B-B')]^2 = \frac{4}{N}$$

Let us now define $A = (a_1 + a_2 + ... + a_N)/N$ and compare the distribution of A as measured by Alice with the distribution of B + B' as measured by Bob.

The distribution of A is a simple binomial. The possible values of A are 1, 1-2/N,..., 1-2n/N,..., -1+2/N, -1 with probabilities $N!/2^N n!(N-n)!$ respectively.

In contrast, we can only estimate the values of B + B': for example, when Alice obtains 1, then Bob obtains approximately the value $B + B' = C_{SQ}(a,b) + C_{SQ}(a,b')$. In general, if Alice obtains 1-2n/N, then Bob obtains

$$B+B'\approx (1-2n/N)[C_{SQ}(\boldsymbol{a},b)+C_{SQ}(\boldsymbol{a},b')]$$

Pirsa: 16060093 Page 22/31

Let us now define $A = (a_1 + a_2 + ... + a_N)/N$ and compare the distribution of A as measured by Alice with the distribution of B + B' as measured by Bob.

The distribution of A is a simple binomial. The possible values of A are 1, 1-2/N,..., 1-2n/N,..., -1+2/N, -1 with probabilities $N!/2^N n!(N-n)!$ respectively.

In contrast, we can only estimate the values of B + B': for example, when Alice obtains 1, then Bob obtains approximately the value $B + B' = C_{SQ}(a,b) + C_{SQ}(a,b')$. In general, if Alice obtains 1-2n/N, then Bob obtains

$$B+B'\approx (1-2n/N)[C_{SQ}(\boldsymbol{a},b)+C_{SQ}(\boldsymbol{a},b')]$$

Pirsa: 16060093 Page 23/31

The fact that

$$B+B'\approx (1-2n/N)[C_{SQ}(\boldsymbol{a},b)+C_{SQ}(\boldsymbol{a},b')]$$

(with \approx and not =) means that we can only write

$$\Delta_{a}(B+B') \ge \left[C_{SQ}(a,b) + C_{SQ}(a,b')\right] \Delta A$$
$$= \left[C_{SQ}(a,b) + C_{SQ}(a,b')\right] / \sqrt{N}$$

Pirsa: 16060093 Page 24/31

The fact that

$$B+B'\approx (1-2n/N)[C_{SO}(\boldsymbol{a},\boldsymbol{b})+C_{SO}(\boldsymbol{a},\boldsymbol{b}')]$$

(with \approx and not =) means that we can only write

$$\Delta_{a}(B+B') \ge \left[C_{SQ}(\boldsymbol{a},b) + C_{SQ}(\boldsymbol{a},b')\right] \Delta A$$
$$= \left[C_{SQ}(\boldsymbol{a},b) + C_{SQ}(\boldsymbol{a},b')\right] / \sqrt{N} ,$$

and similarly

$$\Delta_{a'}(B - B') \ge \left[C_{SQ}(\mathbf{a'}, b) - C_{SQ}(\mathbf{a'}, b') \right] \Delta A'$$
$$= \left[C_{SO}(\mathbf{a'}, b) - C_{SO}(\mathbf{a'}, b') \right] / \sqrt{N}$$

Pirsa: 16060093 Page 25/31

Remember

$$[\Delta_a(B+B')]^2 + [\Delta_a(B-B')]^2 = 4/N$$
,

hence, given

$$[\Delta_a(B+B')]^2 \ge [C_{SQ}(a,b) + C_{SQ}(a,b')]^2/N$$

and

$$[\Delta_{a}(B-B')]^{2} \ge [C_{SQ}(a',b) - C_{SQ}(a',b')]^{2}/N$$
,

we get

$$4 \ge [C_{SO}(a,b) + C_{SO}(a,b')]^2 + [C_{SO}(a',b) - C_{SO}(a',b')]^2$$

But how do we calculate $\Delta_a(B \pm B')$ and $\Delta_a(B \pm B')$?

Whatever Alice measures, we have

$$\langle (B+B')^2 \rangle + \langle (B-B')^2 \rangle = 2 \langle B^2 \rangle + 2 \langle (B')^2 \rangle = \frac{4}{N}$$
,

since

$$\langle B^2 \rangle = \frac{\langle b_1^2 \rangle + \dots + \langle b_N^2 \rangle}{N^2} = \frac{1}{N} = \frac{\langle (b_1')^2 \rangle + \dots + \langle (b_N')^2 \rangle}{N^2} = \langle (B')^2 \rangle$$

Therefore
$$[\Delta_a(B+B')]^2 = [\Delta_a(B+B')]^2 = \frac{4}{N} - [\Delta_a(B-B')]^2$$
,

i.e.
$$[\Delta_a(B+B')]^2 + [\Delta_a(B-B')]^2 = \frac{4}{N}$$
.

Remember

$$[\Delta_a(B+B')]^2 + [\Delta_a(B-B')]^2 = 4/N$$
,

hence, given

$$[\Delta_a(B+B')]^2 \ge [C_{SQ}(a,b) + C_{SQ}(a,b')]^2/N$$

and

$$[\Delta_{a}(B-B')]^{2} \ge [C_{SQ}(a',b) - C_{SQ}(a',b')]^{2}/N$$
,

we get

$$4 \ge [C_{SO}(a,b) + C_{SO}(a,b')]^2 + [C_{SO}(a',b) - C_{SO}(a',b')]^2$$

Applying the inequality

$$(x^2 + y^2)^{1/2} \ge |x + y| / \sqrt{2}$$

to

$$4 \ge [C_{SQ}(a,b) + C_{SQ}(a,b')]^2 + [C_{SQ}(a',b) - C_{SQ}(a',b')]^2 ,$$

we finally obtain Tsirelson's bound:

$$2\sqrt{2} \ge |C_{SQ}(a,b) + C_{SQ}(a,b') + C_{SQ}(a',b) - C_{SQ}(a',b')| .$$

Applying the inequality

$$(x^2 + y^2)^{1/2} \ge |x + y| / \sqrt{2}$$

to

$$4 \ge [C_{SQ}(a,b) + C_{SQ}(a,b')]^2 + [C_{SQ}(a',b) - C_{SQ}(a',b')]^2 ,$$

we finally obtain Tsirelson's bound

$$2\sqrt{2} \ge |C_{SQ}(a,b) + C_{SQ}(a,b') + C_{SQ}(a',b) - C_{SQ}(a',b')|$$
,

as a consequence of relativistic causality in the classical limit.

Pirsa: 16060093 Page 30/31

Conclusion:

The requirement of a classical limit is a *natural* and *minimal* axiom that, together with relativistic causality, rules out PR-box correlations.

D. R., <u>PR-box correlations have no classical limit</u>, in <u>Quantum Theory: A Two-Time Success Story</u> [Yakir Aharonov Festschrift], eds. D. C. Struppa and J. M. Tollaksen (Milan: Springer), 2013, pp. 205-211.

Further analysis of these two axioms yields a theorem of quantum mechanics: Tsirelson's bound. It also points to the Hilbert-space structure of quantum mechanics.

D.R., Stronger-than-quantum bipartite correlations violate relativistic causality in the classical limit, arXiv:1408.3125.

Pirsa: 16060093 Page 31/31