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Abstract: Measurements performed at variable strengths show that non-commuting physical properties are related by complex-valued statistics,
where the complex phase expresses the action of transformations along orbits represented by the eigenstates. In strong measurements, the dynamics
along the orbits is completely randomized, which means that the pure states prepared by such a measurement actually represent ergodic statistics
where the coherence between components originates from quantum dynamics. The complex algebra of Hilbert space inner products describes the
intersection of two ergodically randomized orbits, where the complex phase describes the action of propagation along the orbits. Since the same
action also appears in classical descriptions of the dynamics it is possible to derive quantum states and their time evolution directly from the
classical equations of motion, without the abstractions of operator algebra.

A representative example of this fundamental relation between classical dynamics and quantum coherence is the multi-photon interference in
two-path interferometers, where the multi-photon interference fringes can be explained by the action enclosed by two classical orbits corresponding
to the input and output photon number states. This example shows how the non-classical features of quantum statistics emerge from the effects of
enclosed actions on the causality relations between the initial orbit prepared by ergodic randomization and the final orbit along which the system
was sampled during the measurement. Since action relations take the same form in quantum mechanics and in the classical limit, any attempt to
explain quantum mechanics should start with an analysis of the dynamics.

The conventional sense of reality only emerges from the consistency of causality relations,not from any abstract ~"knowledge of reality”. Our
concepts of particles and trajectories only have an approximate validity which breaks down in the limit of small action. Reality always requires the
dynamics of interaction, and hbar is an absolute limitation of physical redlity. In this presentation, | hope to clarify that this abbsence of a microscopic
material reality can be understood quite naturally in terms of the well known physics of dynamics and interactions, removing the need for any
untestabl e platonic assumptions about a hypothetical " reality out there".
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e Why are weak and strong measurements so different?

e Deterministic causality and the definition of action

e Emergence of ‘classical” realities from ‘“‘qquantum’” dynamics
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Measurements are physical:
Why the strength of interactions makes a difference

Physics describes relations between physical properties (a,m.,b) -
But how can we find out what the correct relations are?

Initial state . , . Final outcome
_ Interaction D
a ' b
Outcome
TrL

Nature is known by ‘“touch and sight” -

Platonic realities are fictitious additions to science.
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Uncertainties of measurement dynamics

Variable strength sequential measurements are a powerful
method of exploring the relations between physical properties.

? e
Initial state Py —~_ Final outcome

| @) U — (b |
L

Outcome
Tri

If I/ changes b, there is no joint reality of (a.m.b) before or
after the interaction.
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Deterministic relations in weak measurements

Weak values describe the objective relation between the eigen-
states of three physical properties,

Initial state ~ - Final outcome
lay & — b |

L
_ (b | m)y{im | a)
(b | a)

Weak values describe the objective relations between three strong
measurements (a,m.b) that have no joint reality.

Pyeak(m|a,b) weak statistical signature
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Dyvnamic randomization in strong measurements

In strong measurements, b originates from the dvnamics gener-
ated by the ergodic orbit | m){(m |.

Final outcome
P(b|lm)
= [(b | m)|?

Initial state s

| u) U
U

First outcome

P(m|a) = |(m | a)|?

Quantum states and projective measurements represent the
ergodic average of a complete cycle along the orbit | m) (m |!
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How does ergodic randomization work?

T he ergodic probability is defined as the time average of FP(x(t))
over one or more periods 7',

Perg.(b) = 11/ P(b(t)) dt

For dynamics generated by U(t) with eigenstates | m),

!)erg.(h) — Ii/(], | [_.-'([) | ”>(” | [_"-'“i'(!) | /)) At
= Z(bl my(m | a){a | m){m | b)

rre

In quantum dynamics, ergodic averaging results in dephasing.
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Relations between different orbits:
the origin and meaning of complex probabilities

Quantum states describe ergodic orbits. Complex inner products
describe the dvnamics of intersecting orbits.

[} (
S(b,a,m) = h Arg (< | ) (e | O)

b | a)
| u> <u | r
yZ e | 6) (b |
Action Action S optimizes
S(b,a,m) transformations:
) \ Max(|(b | Uar | a)|?) for
| ) (e | >

O = Domexp(—%Sb,a,m)) | m)(m |
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Action physics

T he action S(x) expresses reversible transformations in physics.

J

A

Ap = S(x) —. U — / exp(—%h’(.:‘)) | ..") o l dx
. 2

i

Hilbert space phases can be explained by ‘‘classical’ actions.

)
xr = f[fr(a,b) for .( S(b,a,r) = 0O

A

Classical determinism is recovered when complex probabilities have
action phase gradients of zero.
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The action S(x) expresses reversible transformations in physics.

) - ,
Ap = —S5(x) U= [EXD("‘:T-“'(-*'” | z){x | dx
dx / h

Hilbert space phases can be explained by “classical” actions.

)
T = fz(a, b) for (—-.""(fj. a,z)=0

Jdx

Classical determinism is recovered when complex probabilities have

ction phase gradients of zero.
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Quantum coherence as transformation distance

“Superpositions'’ describe intersections between orbits, where the
phase localizes the intersection along the orbits.

Intersections:

(m | a)
- | a)

Enclosed action of three orbits:
S(b,a,m) = RAra((m | a))
+ 7 Arg((b | m))
+7nArg({a | b))

| m1) | m2) | m3) | ma)
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Quantum ergodicity of energy eigenstates

A classical action S(B,A.F) can be derived from the time it takes
to get from A to B at an energy of F,

)
Y S(B,A,E) = t(B, A, E)
OF
T he eigenstate | m) with EF = FE,;,, can be expressed in the eigenstate

basis | b)) with B = 3.

)2,5' A.FE o ALK
Sl |Al AHZ [025(B.AB) (,S(B.A.E)
V™ 2=7% V — oB oE T

13213]');1;2[‘:;'”

ADAFE AP give the intervals between eigenvalues:
T he sum runs over multiple solutions for t.
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Getting the classical Iimit right

Action phases also describe the dyvynamics of states in Hilbert space
(Eur. Phys. J. D 70, 118 (2016)).

S(b,a,t) =T Arg ((b | U(t) | a))

T he dynamics of the action is given by the energy,

a9 - (b | H|a(t))) ;
m.s(h.u.f) — —Re( b ald) ) = —FE(b,a,t)

T he weak value replaces the classical energy Iin this generalized
Hamilton-Jacobi equation.
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T ime evolution and weak values

T he time evolution of the “intersection” (b | a(t)) is given by the
weak values of energy:

%) _ _ i Gl H]|a®) .\
bl a®) = —5 ZSE IS (b ] al®)

Higher order derivatives are determined by higher order weak values:

92 1 (b | H? | a(t))
m2<h lalt)) = T R2 (b | a(t))

(b | a(t))

Equivalent to time dependent Schrodinger equations, these relations
provide a better explanation of the physics of energy and time.
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Observation of the action in multi-photon interferences

In N-photon interference, the phase-dependent action appears as
interference between positive and negative generator values.

a = Anin 52 1
N . Z_(b|a) = ——5J2(b,a, )b | a)
\_ — ()(_'.",:-) 7}_ :
Generator B [(b]| (1 — 72)2 | a)
.13 —_ /
_ 2\ (b | a)
ni1 — 12
Action of interference fringes:
L
N (b | a) ~ Acos(S(b,a,d)/R)
b = Af?out
‘)
‘ ; é Sb,a,d) = —Jz(b,a,d)
Phase shift: U(¢) = exp(—3(n1 — n2)¢) e
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Observation of the action in multi-photon interferences

In N-photon interference, the phase-dependent action appears as
interference between positive and negative generator values.

a = Anin

Pl
)=

OPH2

(b| a) = —L,).lg(h. a, )b | a)
T:_

Weak value (classical causality)

Generator
R Anoyt = COS dpAnin
n1 — n2 -+ sin (;}\/41:1:12 —_ 4‘3:151
U
b = Anout 7 T J..' N2 a2 — 2abcos b + b2
J3 = — [ IN < =— - -
2 (sin $)2

Phase shift: U(¢) = exp(—%(7n1 — n2)d)

Pirsa: 16060073 Page 18/27



Explanation of multi-photon interference fringes

N = 16 photons, input (8,8), output (11.5) Eringe width:

|<;‘h=6|u=o;-.|'-“ T h

A(,‘"J f—

020 J3/(40F) J3

0.15} Path intensities:

hof 62
Jz3 = —,/162 — — __
2 \/ (sin )=

0.05
- Fringe estimate (¢ = 0):

T

ADPmin. =
1 2 3 4 5 6 7.42

= 0.424

phase shift ¢
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Interference is

\

2734
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(I(tl)

an effect

of the enclosed action

T he orbits a and b have two
intersections with +./3.

Phase shifts ¢ sweep the
enclosed action 25,

Interference fringes:

(b a(p)) = A cos (%H(,;,))
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Dyvnamic orbits versus static realities

Why is it impossible to break down the orbit | a){(a | into separate
realities of (a.b) or(m.,a) ?

| a){a |= Z | BY(b | a){a |= Z | ) (e | a){a |
I’

rr:

T he problem is that there is no static relation between (a,b) and
(m,a). Instead, m connects a and a by dynamics,

| BY(b | ay(a |=S_ | b)(b | m)(m | a){a |

rri

(b | Onr | a) = 32 (b | m)(m | a) exp(—=S5(m))

rri
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Re-connecting the physics

Quantum state preparation results Iin ergodic randomization of a
complete orbitenclosing a minimal action of 277.

Measurement samples a complete orbit before it can produce an
outcome.

Quantum statistics are modulated by the action-phases enclosed by
the two orbits.

T he reality of physical systems is shaped by their dynamics.
Quantum phases describe this dynamics in the form of an action.
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“And vyet it moves

Why do we stubbornly insist on fantasies of realities that nobody
can see?

Quantum mechanics makes intuitive sense, because perfect control

is an artificial asumption. We simply do not notice the details of
the dvnamics described by actions of 2xT.

Observations take time - there is no instantaneous snapshot of re-
ality. Motion can only be observed by interactions that change the
motion. Mathematical trajectories do not exist in the real world.

Action phases and complex correlations are consistent with our
experience - mathematical trajectories and point particles are not!
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Further reading

The story of the action phase - a trilogy in five parts:

1. “"On the role of complex phases in the quantum statistics of weak measure-
ments,” H. F. Hofmann, New J. Phys. 13, 103009 (2011).

2. “"Complex joint probabilities as expressions of reversible transformations in
quantum mechanics,” H. F. Hofmann, New J. Phys. 14, 043031 (2012).

3. “Derivation of quantum mechanics from a single fundamental modification
of the relations between physical properties,” H. F. Hofmann, Phys. Rev. A
89, 042115 (2014).

4. “"Quantum paradoxes originating from the nonclassical statistics of physical
properties related to each other by half-periodic transformations,” H. F.
Hofmann, Phys. Rev. A 91, 062123 (2015).

5. “"On the fundamental role of dynamics in quantum physics,” H. F. Hofmann,
Eur. Phys. J. D 70, 118 (2016).
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Action and causality in quantum dynamics

Time ¢

a — b
Energy E

Action phases
E(t) = —h 5Arg((b | U(t) | a))

t(E) = | a:Arg((b| EY(E | a))
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