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Three roads to Quantum Foundations:
eDiscover new quantum phenomena that challenges our understanding.

eInterpretational approaches: Assume the dynamics and kinematics of QM are
correct and that the measurement problem and other foundational issues reflect
a defect in our understanding of the theory. Seek to reformulate the theory,
keeping its physical content unchallanged.

Copenhagen, Everett, information theoretic reconstructions

*Dynamical approaches: Assume the measurement problem and other issues
arise because QM is an incomplete description of nature. Seek to find the
correct completion, which will resolve the measurement problem and have an
unproblematic interpretation.

deBroglie-Bohm, spontaneous collapse, hidden variables, Nelson, many classical
interacting worlds (MIW), matrix models...

Pirsa: 16060064 Page 3/33



The challenge of non-locality

® Physics is a weird combination of local and non-local.
*| ocal propagation of energy and information
*Non-local entanglement.

® We learn from GR that space and time are relational. So locality must be
relational too.

® Quantum gravity suggests space is emergent from a network of relations or
interactions. But then locality must be emergent too.

® Valentini tells us that the price or reward of going out of quantum
equilibrium is non-local signaling, ie locality is a feature only of quantum

equilibrium. Is the world awash in non-local interactions that are hidden by
equilibrium.

® Locality is also relative to position and motion of the observer.

Are there defects in locality? Events that are far away in the emergent geometry
of space that are causal neighbours? Is this the origin of entanglement?
3
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A relational view of locality

The view of an event is the information available there from the past, containing
information about the past causal neighbourhood.

Events nearby in spacetime have similar views.

But so do similarly prepared quantum systems in similar environments.

So we can reverse this and make locality a consequence of similarity of views.
Events that have similar views can interact, by virtue of that similarity.
Sometimes this results in their being nearby in the emergent spacetime.

But sometimes it is just because they have similar preparations, even if they are far
away.
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An heuristic Principle:

Leibnitz’s identity of the indiscernible.
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Principle of the identity of the indiscernible (PIl): any two events
or objects with isomorphic relational properties are to be identified.

*Global symmetries cannot be fundamental. Indeed GR has none and all
the global symmetries in the standard model are accidental or broken.

* Relative locality: Localization is a consequence of identity, ie something is uniquely
localized if it is distinguished by having a unique causal neighborhood.

eHypothesis: the fundamental geometry is built from distinctiveness based on causal
neighborhoods. Distance is a consequence of having disimilar causal neighborhoods.

eThere are defects in this causal geometry. Two systems with very similar causal
neighborhoods are nearby causally, even if distant in the coarse grained macroscopic
metric. Hence they interact.

eThe interactions induced between two similar systems are repulsive in that they act
to increase their distinctiveness. Thus the Pll is protected dynamically.
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The PII forces local physics to be non-deterministic:

*By the Pll each event has a unique causal neighborhood (arXiv:1307.6167):
eSuppose two events A and B have isomorphic causal pasts:

P(A) = P(B)
Then to prevent a violation of the Pll their causal futures must be different

= F(A) ¥ F(B)

Thus the same causal past implies a different causal future. Hence
local physics cannot be deterministic. It must be anti-deterministic.

The basic hypothesis: there is a non-local interaction between similar systems
which acts to increase their differences. This is the origin of quantum
physics. This interaction is driven by a potential energy which measures

the distinctiveness of all the pairs of similar subsystems in nature.
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QM from 4 principles
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I) Quantum mechanics is necessarily a description of subsystems of the
universe. It is an approximation to some other, different theory, which might be
applied to the universe as a whole.
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2) The real ensemble hypothesis: A quantum state refers to an ensemble of
similar systems present in the universe at a given time. By similar systems
we mean systems with the same constituents, whose dynamics are
subject to (within errors that can be ighored) the same Hamiltonian, and
which have very similar histories and hence, in operational terms, the
same preparation. arXiv:1104.2822

3) Locality comes from similarity of views: Similar systems have a new
kind of interaction with each other, just by virtue of their similarities. This
interaction takes place amongst similar systems, regardless of how far
apart they may be situated in space, and thus, this is how non-locality
enters quantum phenomena. These interactions prevent similar systems from
becoming identical and hence protect the principle of the identity of the
indiscernible.

10
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The variety of a network, G, representing a system of relations.

*N (k) is the I'th neighborhood of node k.
*This is the subgraph of G including those nodes | steps from k.

eFor any pair of nodes,
*ni is the smallest n such that
*N (k) is not isomorphic to N (l).

*The distinctiveness of the pair is

1
D(k,l) = —

YY)

*The variety of G is

1
Y = D(k,l) =
NV =1y 2 DD

12
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High variety

heallhandsociely . columbia.edu 14
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. An attractor state
shown in detail

A

P}. transient tree
l ';‘ and sub-trees

httpi/enwikpedia.org/wikifinteractome

High variety

healthandsocietly columbia,edu 15
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Low variety

16

Pirsa: 16060064 Page 15/33



The dynamics of maximal variety

17
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Configuration beables, views and variety.
Our system is an ensemble consisting of N similar subsystems.

Each has a d-dimensional configuration beable x*«. k=1, ..N, a = 1,...,d.
We assume these live in a vector space with metric.

The momentum information is carried by a single modular phase:

3 S
wy = ehrk

19
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Configuration beables, views and variety.

Our system is an ensemble consisting of N similar subsystems.

Each has a d-dimensional configuration beable x*.. k=I, ...N, a = 1,...,d.
We assume these live in a vector space with metric.

eThe subsystems are similar systems with the same constituents, subject to
the same forces, internally and externally so that, when expressed in centre
of mass coordinates, they are, up to negligible errors, described by the same
Hamiltonian. They also have the same preparations so that they fit the
operational definition of having the same quantum state.

eAlternative interpretation: the subsystems are near copies of our universe

which exist simultaneously and interact with each other through new

interactions.
(MIVWV hypothesis: Hall, Decker,Wiseman; Holland, Piorier)

20
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Each subsystem, i, has a view of the rest of the system:

V_k: a

(2

(g2

X

2

— Xy xy —

I'

T DGR o

—— I/A

SO(R — |28

— @)

Differences between views give the distinctiveness of a pair of

subsystems:

1
I,] — N Z (‘/?:A.a. -
L

Sum this over all pairs to define the variety:

V.A:a.) B
J

A
V=132 Ti=

oy

i£j

A | N
=SS (ViE - VR

k
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From the variety define an interaction between subsystems in terms of

a potential energy. This is the inter-ensemble interaction.

h? h2 A | "
v o —_— ko k
Uu- = S v KK N3 Z; S}\j (‘/’ ‘/:! )

-2 a . '
_ h A y\ Y X, £y, - L4
KR N3 > i, ra . pa |2 e

k  i77

Energy is minimized by maximizing the variety!

22
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Modular phase beable:

If this were classical mechanics we would define a momenta beable p,*
conjugate to the configuration beable x?« .

But in quantum mechanics the momentum density is the gradient of a
phase, and this imposes restrictions on the p.* (Wallstrom).

So we posit that each subsystem has a modular phase beable

wp = eh ok

23

Pirsa: 16060064 Page 21/33



Modular phase beable:

If this were classical mechanics we would define a momenta beable pa
conjugate to the configuration beable x?. .

But in quantum mechanics the momentum density is the gradient of a
phase, and this imposes restrictions on the p.* (Wallstrom).

So we posit that each subsystem has a modular phase beable

wp = eh Ok

From these and the views we define a relational momenta:

1 ; w ;
g = — 12— E V., 1n J
Pka N L (’LUA-, )

J#k

24
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Modular phase beable:

If this were classical mechanics we would define a momenta beable pa
conjugate to the configuration beable x?. .

But in quantum mechanics the momentum density is the gradient of a
phase, and this imposes restrictions on the p.X (Wallstrom).

So we posit that each subsystem has a modular phase beable

wp = eh Ok

From these and the views we define a relational momenta:

1 aj 1. w4
Pka = —135 E V7 In ( !

w
oy b

These give us the kinetic energy:

2
. Z h? 1 w
K.E. =Re;— E _ —5 [In /
2mN — (;SA — ;) W,
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The fundamental action

S(w,x) = / dtZ — 20 Z.I V“ [111 (U)A )]
2

JF#k

The Hamiltonian

H|x, w]

k#7 t#£

Hx, w] = Re !;-:; (Z Z(L’)")"—’ [111 (::; )] Z (Vike — V; l-u ) Z U(xp)
A.

U(x) is a standard potential, within each subsystem.

In the large N limit this reproduces quantum dynamics

26

Pirsa: 16060064

Page 24/33




Deriving quantum mechanics

27
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The large N limit and the continuum approximation.
The average of a function is given by a probability density p(x).
1 .
< ¢ >= ~ EA. d(xr) — / dzp(2)p(2)

For double sums we use:

1 o
N E D(Tpqi, ) — / dcp(z + x)d(z + x, 2)

The short distance cutoff is a, reflecting the fact that for finite N
nearest neighbors are not likely to come nearer to each other than

1
a(z) = .
(Np(z))«
!
For the large scale cutoff, we rescale R by N'/d : R — : :
We hold r’ fixed as we vary N. N a

for large R, r’ is independent of p(z) s
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The results:

The Hamiltonian

_ (,z jay2 |y W 24 A A T (x
il R Rl 2m (/,;(V ) [l (UA- ] AN < "y )+Zl( )
becomes to leading orde/ /
¥
' Do S)? =
2m 8rn
30
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The symplectic st

SO (w, x)

In the continuum:

AN

20 = Qi — 1)
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SV —ZON/ dt/ ddzp(z)z”'z)u,(z)
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Putting everything together:

s= [ar [atzp) [5+ + LSSy B (Goun? +U + O 5+ 0(x)]

2m 817:
Equations of motion: quantum
1 potential
pla) = Oa(p—g™* S (x*)) e
. 1 oS a5 h2 V?
_S:_____ga.b(‘______)(‘ )_ \/ﬁ—f—U
21 DX gen . OTpey 2m  \/p

These are the real and imaginary parts of the Schroedinger equation:

A, h2
<——v2 + U) Y,

2mMm

W(x,t) = /per® 32
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Some comments

33
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Probabilities and ergodisity:

p(x) is the ensemble probability distribution.
Pk(x) is the probability distribution in the k’th subsystem.
We must posit an ergodic hypothesis:

Over time, for all k, pK(x) — pPp(x)

34

Pirsa: 16060064 Page 31/33



Quantum statistics: p(x)

Let us have a system of M identical particles with configurations
x I=1,...M, a=I,.d, k=lI,.nand phases wg

Pll: there is no effect of switching the coordinates of two identical
particles, so we require

(e Ty - 5 )

P(rlo, i1, 1)

plxdy, o, ..., 1)

P(XE1, Thos .-, t)

We plug these into the equations of motion to deduce
Re) .a . o . / L
S(xhq, Thoy---,t) = S(xho, Tr1,---,1) + @

Doing this twice, and recalling that S is defined up to 2mn, we find

¢

w(xp, Tpo) = en S(Tr1,Tr2) _y w(xpo, rp1) = tw(xpr, Tr2)

ie bosons and fermions.
35
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The solution to the measurement problem:

Microscopic systems are quantum because they have large numbers of
near copies in the universe, hence the variety interaction works on
them and they find themselves members of large ensembles of similar
systems.

Macroscopic systems are unique. They have no copies and are not
parts of any ensembles. Hence they are not subject to quantum

uncertainty. Their collective coordinates obey the fundamental
deterministic dynamics.

36
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