Title: Features of Sequential Weak Measurements

Date: Jun 22, 2016 09:45 AM

URL: http://pirsa.org/16060053

Abstract: I discuss the outcome statistics of sequential weak measurement of general observables.

In sequential weak measurement of canonical variables, without post-selection, correlations yield the corresponding correlations of the Wigner function.

Outcome correlations in spin-1/2 sequential weak measurements without post-selection coincide with those in strong measurements, they are constrained kinematically so that they yield as much information as single measurements. In sequential weak measurements with post-selection, a new anomaly occurs, different from the weak value anomaly in single weak measurements. I consider trivial post-selection, i.e.:

re-selection |f>=|i>,

which should intuitively not differ from no post-selection since weak measurements are considered non-invasive. Indeed, re-selection does not matter, compared with no-selection, for single weak measurement. It does so, however, for sequential ones. I illustrate it in spin-1/2 weak measurement.

WM vs post-selection

- In unsharp (imprecise) measurement on $\hat{\rho}$, post-measurement state preserves some well-defined features of $\hat{\rho}$.
- Imprecision a of measurement can be compensated by larger ensemble statistics.
- Weak measurement (WM): asymptotic limit of zero precision $a \rightarrow \infty$ (and infinite statistics): pre-measurement state $\hat{\rho}$ invariably survives the measurement (non-invasiveness).
- WM was used by AAV as non-invasive quantum measurement between pre- and post-selected states, resp.
- *Non-invasiveness* of WM is remarkable both *with and without* post-selection, can be maintained for a succession of WMs on a single quantum system.

General features of such sequential WMs (SWMs): our topics.

Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo

DQQ

SWMs without post-selection

SWMs without post-selection

 $\hat{A}: \text{ measured}; A: \text{ outcome}; \mathbf{M}: \text{ statistical mean}; \langle \hat{A} \rangle: \text{ q-expectation}. \\ \mathbf{M}A = \langle \hat{A} \rangle - \text{ single WM} \\ \mathbf{M}AB = \frac{1}{2} \langle \{ \hat{A}, \hat{B} \} \rangle - \text{ double WM}: \text{ order doesn't matter} \\ \mathbf{M}ABC = \frac{1}{8} \langle \{ \hat{A}, \{ \hat{B}, \hat{C} \} \} \rangle - \text{ triple WM}: \hat{B}, \hat{C} \text{ are interchangeable} \\ \text{ Generally:} \\ \end{tabular}$

 $\mathbf{M}\hat{A}_1\hat{A}_2\dots\hat{A}_n = \frac{1}{2^n} \langle \{\hat{A}_1, \{\hat{A}_2, \{\dots, \{\hat{A}_{n-1}, \hat{A}_n\}\dots\}\}\} \rangle$ Correlation of SWM outcomes =

Step-wise symmetrized quantum correlation of operators
 Ordering in SWM matters but the last two ones are interchangeable.
 Sufficient condition of full interchangeability:

 $[\hat{A}_k, \hat{A}_l] = ext{c-number} \ (k, l = 1, 2, \dots, n).$

Then step-wise symmetrization \Rightarrow symmetrization \mathcal{S} :

$$\mathbf{M}A_1A_2\ldots A_n = \left\langle \hat{\mathcal{S}A_1}\hat{A_2}\ldots \hat{A_{n-1}}\hat{A_n} \right\rangle$$

Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 4 / 11

SWM of canonical variables

SWM of canonical variables

$$\hat{A}_k = u_k \hat{q} + v_k \hat{p}$$
 $(k = 1, 2, \dots, n)$ where $[\hat{q}, \hat{p}] = i$

Step-wise symmetrization \Rightarrow symmetrization S = Weyl ordering! Weyl-ordered correlation functions of $\hat{q}, \hat{p} =$ = correlation functions (moments) of Wigner function W(q, p).

$$\mathbf{M}A_1A_2\dots A_n = \int W(q,p)A_1A_2\dots A_n \mathrm{d}q \mathrm{d}p \equiv \langle A_1A_2\dots A_n \rangle_W$$

(for $n = 2$: Bednorz & Belzig 2010)

Direct tomography through Wigner function moments:
Example: SWM of
$$\hat{q}$$
, \hat{q} , \hat{p} , \hat{p} (in any order) yields
 $\langle q \rangle_W = \mathbf{M}q_1 = \mathbf{M}q_2;$ $\langle p \rangle_W = \mathbf{M}p_1 = \mathbf{M}p_2$
 $\langle q^2 \rangle_W = \mathbf{M}q_1q_2;$ $\langle p^2 \rangle_W = \mathbf{M}p_1p_2,$
 $\langle qp \rangle_W = \mathbf{M}q_1p_1 = \mathbf{M}q_1p_2 = \mathbf{M}q_2p_1 = \mathbf{M}q_2p_2$
 $\langle q^2 p \rangle_W = \mathbf{M}q_1q_2p_1 = \mathbf{M}q_1q_2p_2;$ $\langle p^2 q \rangle_W = \mathbf{M}p_1p_2q_1 = \mathbf{M}p_1p_2q_2$
 $\langle q^2 p^2 \rangle_W = \mathbf{M}q_1q_2p_1p_2$
also Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 5 / 11

Budapest Features of Sequential Laios Diós Vigner Centre 22 June 2016, Waterloo

SWM of spin- $\frac{1}{2}$ observables

SWM of spin- $\frac{1}{2}$ observable

SQM of $\hat{A}_1 = \hat{\sigma}_1$, $\hat{A}_2 = \hat{\sigma}_2$, ..., $\hat{A}_n = \hat{\sigma}_n$; $(\hat{\sigma}_k = \hat{\sigma} \vec{e}_k, |\vec{e}_k| = 1)$ Outcomes $A_1 = \sigma_1$, $A_2 = \sigma_2$, ..., $A_n = \sigma_n$ Surprize: $\mathbf{M}\sigma_1\sigma_2\ldots\sigma_n=\frac{1}{2^n}\langle\{\hat{\sigma}_1,\{\hat{\sigma}_2,\{\ldots,\{\hat{\sigma}_{n-1},\hat{\sigma}_n\}\ldots\}\}\}\rangle$ (*)is valid no matter the measurements are weak or strong (ideal). R.h.s. for SSM (with $\hat{P}_{\pm} = \frac{1}{2}(1 \pm \hat{\sigma})$: $\mathbf{tr} \sum_{\sigma_n = \pm 1} \sigma_n \hat{P}_{\sigma_n}^{(n)} \dots \left(\sum_{\sigma_2 = \pm 1} \sigma_2 \hat{P}_{\sigma_2}^{(2)} \left(\sum_{\sigma_1 = \pm 1} \sigma_1 \hat{P}_{\sigma_1}^{(1)} \hat{\rho} \hat{P}_{\sigma_1}^{(1)} \right) \hat{P}_{\sigma_2}^{(2)} \right) \dots \hat{P}_{\sigma_n}^{(n)}$ Key identity $\sum_{\sigma=+} \sigma \hat{P}_{\sigma} \hat{O} \hat{P}_{\sigma} = \frac{1}{2} \{\hat{\sigma}, \hat{O}\}$, using it *n*-times yields (*)! Evaluating r.h.s. yields $\mathbf{M}\sigma_{1}\sigma_{2}\ldots\sigma_{n} = \begin{cases} (\vec{e}_{1}\vec{e}_{2})(\vec{e}_{3}\vec{e}_{4})\ldots(\vec{e}_{n-1}\vec{e}_{n}) \\ \langle \hat{\sigma}_{1} \rangle (\vec{e}_{2}\vec{e}_{3})\ldots(\vec{e}_{n-1}\vec{e}_{n}) \end{cases}$ n even n odd Correlations are kinematically constrained: • *n* even — correlations are independent of $\hat{\rho}$ • *n* odd — correlations depend on $\hat{\rho}$ but via $\langle \hat{\sigma}_1 \rangle$

Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 6 / 11

Testing SWM in Time-Continuous Measurement

- TCM is standard theory.
- TCMs are standard in lab.
- TCMs have WM regime!

TCM of Heisenberg \hat{A}_t in state $\hat{\rho}$, outcomes (signal) A_t :

$$A_t = \langle \hat{A}_t
angle + \sqrt{lpha} w_t;$$

 α : precision/unsharpness of TCM w_t : standard white-noise

22 June 2016, Waterloo

TCM is invasive on the long run but it remains non-invasive as long as $\int_0^t \langle (\Delta \hat{A}_s)^2 \rangle ds \ll \alpha.$

That's where SQM applies to signal's auto-correlation: $\mathbf{M}A_{t1}A_{t2} = \frac{1}{2}\langle\{\hat{A}_{t1}, \hat{A}_{t2}\}\rangle$ $\mathbf{M}A_{t1}A_{t2}A_{t3} = \frac{1}{2}\langle\{\hat{A}_{t1}, \{\hat{A}_{t2}, \hat{A}_{t3}\}\}\rangle$ etc. Recall r.h.s.'s must be Wigner function moments if \hat{A} is harmonic, kinematically constrained if \hat{A} is spin- $\frac{1}{2}$.

Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements

SWM with post-selection

SWM with post-selection

Outcome correlations:

$$\mathsf{M}A_1, A_2, \dots, A_n|_{psel} = \frac{\left\langle \{\hat{A}_1, \{\hat{A}_2, \dots, \{\hat{A}_n, \hat{\Pi}\} \dots\}\}\right\rangle}{2^n \left\langle \hat{\Pi} \right\rangle}$$

Generic post-selection (D. 2006, Silva & al. 2014): $0 \leq \hat{\Pi} \leq 1$. For pure state pre/post-selection $\hat{\rho} = |i\rangle\langle i|, \hat{\Pi} = |f\rangle\langle f|$, introduce sequential weak values: $(A_1, A_2, \ldots, A_n)_w = \frac{\langle f|\hat{A}_n\hat{A}_{n-1}\ldots\hat{A}_1|i\rangle}{\langle f|i\rangle}$

$$\mathbf{M}A_1, A_2, \ldots, A_n|_{psel} = \frac{1}{2^n} \sum (A_{i_1}, A_{i_2}, \ldots, A_{i_r})_w (A_{j_1}, A_{j_2}, \ldots, A_{j_{n-r}})_w^*$$

 Σ for all partitions $(i_1, i_2, \ldots, i_r) \cup (j_1, j_2, \cdots, i_{n-r}) = (1, 2, \ldots, n)$ where *i*'s and *j*'s remain ordered. Degenerate partitions r = 0, n, too, must be counted. (Mitchison, Jozsa, Popescu 2007)

• n = 1 reduces to AAV 1988.

• n = 2 contains a new paradox. Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo 8 / 11

Re-selection paradox

Re-selection paradox

Special post-selection: $|i\rangle = |f\rangle$, call it *re-selection*. For single WM, re-selection is equivalent with no-post-selection:

$$\mathbf{M} A = \mathbf{M} A |_{\mathit{rsel}} = \langle \hat{A}
angle$$

WMs are non-invasive, we expect re-selection and no-post-selection are equivalent. But they aren't, already for n=2 and $\hat{A}_1 = \hat{A}_2 = \hat{A}_2$:

$$\begin{aligned} \mathbf{M}A_1A_2 &= \langle i|\hat{A}^2|i\rangle, \\ \mathbf{M}A_1A_2|_{rsel} &= \frac{1}{2}\langle i|\hat{A}^2|i\rangle + \frac{1}{2}(\langle i|\hat{A}|i\rangle)^2 \end{aligned}$$

Re-selection decreases $\mathbf{M}A_1A_2$ by half of $(\Delta A)^2$ in state $|i\rangle$:

$$\mathbf{M}A_1A_2 - \mathbf{M}A_1A_2|_{rsel} = \frac{1}{2}(\Delta A)^2.$$
 (1)

Unexpected anomaly! Reason is *finite* contribution of outcomes discarded by re-selection. 22 June 2016. Waterloo

Features of Sequential Weak Measurements Laios Diósi (Wigner Centre, Budapest)

DAC

Example: spin- $\frac{1}{2}$

Example: spin- $\frac{1}{2}$

 R_{disc} — rate of discards; a — precision/unsharpness of measurements

$$\mathbf{M} \dots |_{rsel} = \mathbf{M} \dots - \lim_{a \to \infty} (R_{disc} \mathbf{M} \dots |_{disc})$$

In WM limit $a \to \infty$ of re-selection: $R_{disc} \to 0$.

Single WM of $\hat{\sigma} \equiv \hat{\sigma}_x$, outcome σ_1 with re-selection $|i\rangle = |f\rangle = |\uparrow\rangle$:

- $R_{disc} \sim (1/4a^2) \to 0.$
- $\mathbf{M}\sigma_1|_{disc} = 0$ hence $R_{disc}\mathbf{M}\sigma_1|_{disc} = 0$ anyway.

SWM of $\hat{\sigma}_1 = \hat{\sigma}_2 \equiv \hat{\sigma}_x$, outcomes σ_1, σ_2 with re-selection $|i\rangle = |f\rangle = |\uparrow\rangle$:

- $R_{disc} \sim (1/2a^2) \to 0.$
- $\mathbf{M}\sigma_1\sigma_2|_{disc} = a^2$ hence $R_{disc}\mathbf{M}\sigma_1\sigma_2|_{disc} \rightarrow 1/2$, QED.

Correlation of double $\hat{\sigma}_x$ WM in state $|\uparrow\rangle$ diverges on the discarded events in re-selection. Explains why re-selection differs from no-post-selection. Novel SWM anomalies add to AAV88.

Lajos Diósi (Wigner Centre, Budapest) Features of Sequential Weak Measurements 22 June 2016, Waterloo

