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Abstract: The weak value, as an expectation value, requires an ensemble to be found. Nevertheless, we argue that the physical meaning of the weak
value is much more close to the physical meaning of an eigenvalue than to the physical meaning of an expectation value. Theoretical analysis and
experimental results performed in the MPQ laboratory of Harald Weinfurter are presented. Quantum systems described by numericaly equal
eigenvalue, weak value and expectation value cause identical average shift of an external system interacting with them during an infinitesimal time.
However, there are differences between the fina states of the external system. In the case of an eigenvalue, the shift is the only change in the
wavefunction of the external system. In case of the expectation value, there is an additional change in the quantum state of the same order, while in
the case of the weak value the additional distortion is negligible. The understanding of weak value as a property of a single system refutes recent
claims that there exist classical statistical analogue to the weak value.
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The meaning of weak value

What is “a value of a variable”?

Weak value controversy

Weak value as an outcome of weak measurements
Weak value as a property of a single system

Preliminary experimental results
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A value of a physical observable (’

h |
(-' Is classical C=c Classical values always have definite values
(' is quantum The system is pre-selected |‘P> = |‘PA)
C=c (' has a definite value eigenvalue
’ h— A_
C is quantum The system is pre-selected |‘P) = Zak | ‘P,\,)
i k
C=(C)={¥|C|¥) (C) =" probk) ¢, =Y |et, [ ¢,
k e
(' has no definite value (C} is a statistical expectation value
(is quantum The system is pre-selected |¥) and post-selected |®)
o|C|Y
C=C = w The system is described by the weak value

Ty

Is the weak value statistical as the expectation value or definite as the eigenvalue?
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How the Result of a Measurement of a Component of the Spin of a
Spin- 3 Particle Can Turn Out to be 100

Yakir Aharonov, David Z. Albert, and Lev Vaidman

Physics Department, University of South Carolina, Columbia, South Carolina 29208, and
School of Physics and Astronomy, Tel-Aviv University, Ramat Aviv 69978, Israel
(Received 30 June 1987)

We have found that the usual measuring procedure for preselected and postselected ensembles of
quantum systems gives unusual results. Under some natural conditions of weakness of the measurement,
its result consistently defines a new kind of value for a quantum variable, which we call the weak value.
A description of the measurement of the weak value of a component of a spin for an ensemble of
preselected and postselected spin- § particles is presented,

(‘mnpumlium of Quantum
Physics

Concepts, Experiments, History and Philosophy

Wcak Valuc and Weak Mcasurcments ditors. Greenberger Donwl Hentachel Kious Welnert Friodel (Ed

Lev Vaidman

The weak value of a variable @ is a description of an effective interaction with that
variable in the limit of weak coupling. For a pre- and post-selected system described
at time r by the two-state vector (®| |W) [1], the weak value is [2]:

)
0 —({H( N])‘ (1)
(t[]l\p)
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Colloguium. Understanding quantum weak values: Basics and
applications

Justin Dressel, Mehul Malik, Filippo M. Miatto, Andrew N. Jordan, and Robert W. Boyd
Rev. Mod. Phys. 86, 307 — Published 28 March 2014

Article References Citing Articles (48) PDF ) |

Since its introduction 25 years ago, the quantum weak value has gradually transitioned from a
theoretical curiosity to a practical laboratory tool. While its utility is apparent in the recent explosion of
weak value experiments, its interpretation has historically been a subject of confusion. Here a
pragmatic introduction to the weak value in terms of measurable quantities is presented, along with an
explanation for how it can be determined in the laboratory. Further, its application to three distinct
experimental techniques is reviewed. First, as a large interaction parameter it can amplify small
signals above technical background necise. Second, as a measurable complex value it enables novel
techniques for direct quantum state and geometric phase determination. Third, as a conditioned

average of generalized observable eigenvalues it provides a measurable window inte nenclassical

features of quantum mechanics. In this selective review, a single experimental configuration to

discuss and clarify each of these applications is used

Page 6/39



Cornell University
Library

arXiv.org > quant-ph > arXiv:1307.4016v1

Quantum Physics

Weak values considered harmful

Christopher Ferrie, Joshua Combes
(Submitted on 15 Jul 2013 (this version), latest version 22 Jan 2014 (v3))
For the task of parameter estimation, we show using statistically rigorous arguments that the process of

postselection (a pre-requisite for so-called weak value amplification) can be no better on average than

week ending

PRL 112, 040406 (2014) PHYSICAL REVIEW LETTERS 11 JANUARY 3014

e s]

¢

Weak Value Amplification is Suboptimal for Estimation and Detection

Chnstopher Ferrnie and Joshua Combes
Cenrer for Quantum Information and Control, Universiry of New Mexico, Albuguerque, New Mexico 87131-0001, USA
(Received 25 July 2013; revised manuscript received 21 November 2013: published 31 January 2014)

We show by using statistically rigorous arguments that the techmigque of weak value amplification does

not perform better than standard statnstical techmques for the tasks of single parameter estimation and
signal detecuon. Specifically, we prove that postselection, a necessary ingredient tor weak value
amplification, decreases estimation accuracy and, moreover, arranging for anomalously large weak values
is a suboptimal strategy. In doing so, we explicitly provide the optimal estimator, which in turn allows us to
identify the optimal expenmental arrangement to be the one in which all outcomes have equal weak values
(all as small as possible) and the initial state of the meter is the maximal eigenvalue of the square of the
system observable. Finally, we give precise quantitative conditions for when weak measurement
(measurements without postselection or anomalously large weak values) can mitigate the effect of

uncharacterized technical noise in estimation,
arXiv:1402.0199 [pdf, ps, other]

Comment on "Weak value amplification is suboptimal

for estimation and detection"
L.Vaidman
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PRL 113, 120404 (2014) PHYSICAL REVIEW LETTERS 19 SEPTEMBER 2014

fcn
How the Result of a Single Coin Toss Can Turn Out to be 100 Heads

Chnistopher Fernie and Joshua Combes
Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131-0001, UUSA
(Recewved 16 March 2014, revised manusenipt received 18 July 2014, published 18 September 2014)

We show that the phenomenon of anomalous weak values is not limited to quantum theory. In particular,
we show that the same features occur i a simple model of a coin subject to a form of classical backaction
with pre- and postselection. This provides evidence that weak values are not inherently quantum but rather

a purely statistical feature of pre- and postselection with disturbance
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Weak value as an outcome
of a weak measurement
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Quantum measurement of ('’

Y (9)

Hint = g(f)PMDC
¥)=Safc)

Y
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Quantum measurement of ('’

o (9)

Hint = g(f)PMDC
¥)=Safc)

Y
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Quantum measurement of ('
I Hint — g(f)PMDC
l Qs = C; W o (Q)
- |\P>=ZQ’I—|C‘.)

Y

0 ¢ ¢, € Q
['¥)[0=0) > Zafe)lo=c) = o -c,)
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Quantum measurement of ('
I Hint — g(f)PMDC
l Qs = C; W o (Q)
- |\P>=ZQ’I—|C‘.)

<C} = Zprob(/\') C, = ;|ak|20k
I

0 b (C) 0

[F)|0=0)>Fale)lo=c) “OH |e)o=c,) prob2)=|a,f

-
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Weak measurement of (' with post-selection
Hint = g(f)P C

MD ™~
<PMD> =0, AP, small

X (Q)

Y
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Weak measurement of (' with post-selection
Hint = g(f)P C

MD ™~
<PMD> =0, AP, small

X (Q)

Qin o O

Y
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Weak measurement of (' with post-selection

H =g)P,C

MD =
<PMD> =0, AP, small
)= Yao)
t 2 (©) f
. -1(g)-0
| — -
0 € ¢, € Q
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Weak measurement of (' with post-selection

H =g)P,C

MD ™
< P\[D) =0, AP, small
Py =1 |¥)=2 alc)
AZ}ID(Q) |CD> = IZ/B,|C,->
P, =1{0)=0
| — 1
O Cl Cg Cﬁ Q
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Weak measurement of (' with post-selection

H =g)P,C

MD ~
(Pyp) =0, AP, small
Py =1 |¥)=2 alc)
AZ}ID(Q) |CD> = IZ/B,|C,->
P, =1{0)=0
——— )
0 C C, ¢, ¢ Q
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Weak measurement of (' with post-selection

L/’f,‘-'uz)(Q)

H =g)P,C

MD ™~
<PMD> =0, AP, small

¥)= Tale)
0)-54)

C,=(0,,) =[P 0 d0

O
o
O
Cy
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Weak measurement of (' without post-selection

H =g)P,C

MD =
<PMD> =0, AP, small
¥)= Yao)
t 2 (©) f
. -1(g)-0
| — -
0 € ¢, € Q

Pirsa: 16060051 Page 20/39



Weak measurement of (' without post-selection

H =g)P,C

MD ™~
<PMD> =0, AP, small
V) =2 ale)
“ZMD(Q) I
Py =1(Q) =0
i -
0 ¢, (C)e, ¢ Q
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Weak measurement of (' without post-selection
Hint = g(f)P C

MD ™~
<PMD> =0, AP, small

V) =2 ale)
“ZMD(Q) I

(C)=(Qm)=| P(©) 0 dO

2, - 1(0)=0
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Weak value as an outcome of a weak measurement
C,=(0,,)=r(©@ 0 do (€)=(0,,)= [ P(©)Q dQ

on condition of post-selection
Weak value is a conditional expectation value

Comment on “How the result of a single coin
toss can turn out to be 100 heads”

In a recent Letter, Ferrie and Combes [1] claimed to
show “that weak values are not inherently quantum,
but rather a purely statistical feature of pre- and post-
selection with disturbance.” In this Comment I will show
that this claim is not valid. It follows from Ferrie and
Combes misunderstanding of the concept of weak value.

Weak value of a variable A is a property of a single
quantum system pre-selected in a state
selected in a state |¢):

Y) and post-

(@141)
((,-’)| l,-") .

A, =

(1)

Page 23/39



Weak value as an outcome of a weak measurement
C,=(0,,)=r(©@ 0 do (€)=(0,,)= [ P(©)Q dQ

on condition of post-selection
Weak value is a conditional expectation value

Comment on “How the result of a single coin
toss can turn out to be 100 heads”
In a recent Letter, Ferrie and Combes [1]| claimed to

FC: Now we demonstrate that it is possible to find anomalous
weak values for pre- and postselected states in the same
basis provided there is classical disturbance. In particular,
we take A = Z, |y) — | + 1), and later we will postselect
on |¢p) — | — 1). By using the probabilities in Eq. (11), the

Weak value of a variable A is a property of a single
1Y) and post-

quantum system pre-selected in a state
selected in a state |¢):

A, = QA (1)

(o1
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The two-state vector

I T 1 Pm*
/ '¥)
o T Pll,:l
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The weak value as a property of a single system

|'¥') is a complete description at a particular time ¢
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The weak value as a property of a single system

|‘P) is a complete description at a particular time ¢

4 - M is a complete description of coupling to C at time t
C (@)
[, T
H _=CB
(¢ +dt) i
[ 1 x(1)
lkp) y " A olc|w)

2 2(t+dt) = ((D| g lc% ‘P)z(r):(cD\(l—z(Bdr)PP}g(r) -{d)|\11}{li<(q|:)\|y)>8dth(r)
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The weak value as a property of a single system

|‘P) is a complete description at a particular time ¢

4 - M is a complete description of coupling to C at time t
C (@)
[, T
H _=CB
(¢ +dt) i
[ 1 x(1)
lkp) y " A olc|w)

2 2(t+dt) = ((D| g lc% ‘P)z(r):(cD\(l—z(Bdr)PP}g(r) -{d)|\11}{li<(q|:)\|y)>8dth(r)

= <(I)‘\P>e”q&kl(f) N e—r(’,, Bm,?,/(f)

~iC, Bt

X (t+d)=e 2(H)
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Comparing states of external system after dt

Him:CB CH,:ck:<C>:c
weak value<q) | C|‘P> The system is pre-selected |'¥) and post-selected ‘(D>
C=C =>——1~ -ic, Bdr
" (DY) 2.t +dt) = e (1)
eigenvalue The system is pre-selected “P} = “I’A>
C= Ck x.(t+dt) = e_”"gdr)((t)
expectation value The system is pre-selected |V)=) & |¥,)
k
C={C)=(¥Y|C|Y¥Y v e
(€)= ¥1er) Pt +d0f= e P 31
Y, (+dty=p, (t+dt)= y (t+dt) = y(t)
Y. (t+dt)y=y (t+dt) p. (t+dt) =y (t+dt)

Which equality is much closer than  x . (t+df) = y(f) 2
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System: charged particle, variable: electric field at the origin
A

eigenvalue q F=1 4 (4t
)= ° S
A ]
expectation value <E> —1 Pe (1 +dl)
o ® RN

Y

|l1!'>=?15(1.5)+|0.5>)

weak value

@)= (-1.5)+]-0.5)) afusl o o

3 5
'm\—l.s)—ﬁ\—o.hﬁ)

=
Il

)=

Y
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Comparing states of external system after dt

H_ =CB C,=c,={(C)=c
weak value<q) c |‘P> The system is pre-selected |'¥) and post-selected ‘(D>
C=C, = W X, +dt)=e " (1)
eigenvalue The system is pre-selected H’) = “ﬂ)
C=c 2.(t+db) = e P (1)
expectation value The system is pre-selected \¥)= Za’k\q’->
C=(C)=(¥ICI¥) ot +dt) = e P (1)

D(y.¢)= arccos|<g | ;’;'>|

Bures angle distance
(7.p)=arccos (x| p| 1)

>

D(x(®), x.(t+dt)) = cABdt

D (x.(t+dbt), ,g“.(wdt)):%’((“ -cC ‘\/ B2 dr)
D(x.(t+dt),p, (t+dt))=AC AB dl
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Example: spin 1 particle C =3,

A

eigenvalue expectation value weak value

1
5 (1-1+10)

11
S =0 (8,)=0 (5) =0
| ‘[
% S—— —1 |
0) = (1-1)+[1) 7 (-0+1)
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Example: spin 1 particle C =S5, Hi = 5.
C,=¢,={C}=0 2(1)=e

Eigenstate |¥)=|0) eigenvalue S,=0 7.(t+d)
z'_’2 /"

0 A2 y A2
(i) =ee A =p 24

—10p,dt

y.(t+dt)y=e

Pre-selection |¥)=—=(|-1)+|1)) expectation value ($,)=0 p.(1 +d)

.\/7

(|71>e!p dt +|1 ~ip, dr) e YR _| El.:‘.(\l‘{} " ||>(_, (".‘\"

Pre-selection |V )= —1 (|-1)+ 1)) post-selection |¥ )= \/ (|=1)+[1))

f< L+ ))s. (-1)+]1))

weak value (%) = LA (i)
G-} G-} (2+dt) ()
(A | [-1ye 3 e l=c W e
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Imitation of spin 1 particle by photon polarization
S =-1) < |H) S =1) & [V} |5=0 < nocoupling

N ]
P=V)(V|-|H)H|
eigenvalue expectation value w:aak value
7:-(|f1>+|V>)
1, T R
"P=0" <P>=O “:0
[
L T —  — |
no coupling \}?(H}+|V_>) S ([H)+[7)
;(R‘(/—i-(//)‘: p.. (1 +dt) 7. (t+db)
— ;_\.‘ ( m\ (z a;'{|“ ( 'fff\)‘ ( dt)
— ¢ =|-1)e ** +|l)e ** =e “4 +e
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/"
Experiment comparing 1. (I+d)=e 2~
(_-.,‘.“" (z (I.-“'\

with 2. (+a) =|-1)e **" +|1)e
(/'i(/r}: (z (f[):

r.(t+d) =e Y +e N

- lari D = V
f polarizer = arccos
N

e 2N
reference

), (1 +d)
B\ | N D

BC visibility

phase
modulator
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D(y.(t+dt),p, (t+dt))=AC AB dl

D(y.(t+dt), y, (t+dt))= %|(C) c

W

0.995
- - I I -y

> 0.985 —lr i -
>
h—
2 0098}
R
>

0.975 f

expectation value
- weak value
0.97

0 002 004 006 008 01 012 014 016 0.18
ge/A
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D(y.(t+dt),p, (t+dt))=AC ABdt =AS, Ap, dt = %dr

) 2\ 2 ) 1 2
J(B)-(B) (dr) = (@)

3

D(y.(t+dt), y, (t+dt))= %|(C) ¢’

W

0.995
I - I —

0.99 T: — T T X
> 0.985 | — t
>
b —
L 0098}
D
>

0.975 F

expectation value
- weak value
0.97 ¢

0 002 004 006 008 01 012 014 0.16 0.18
ge/A
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D(y.(t+dt),p, (t+dt))=AC ABdt =AS, Ap, dt = %dr

D(y.(t+df), 7. (t+ dz)):%KC:)“ C,:\/<B4> (B*) () = IA" (dt)’

D = arccosV

expectation value

<
O 0.1 -
Q

o

c ‘ ~

©

) [ , &>
5 005 _—

0 — 1 L [ 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 012 0.14 0.16 0.18
ge/l
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Summary

Weak value is a property of a single pre- and post-selected system

(It is not a property of a measuring procedure) <(D | C | lP)
C (@)

An ensemble is needed only to test that it is true

A pre and post-selected system interacts with external systems
during infinitesimal time as if the weak value is an eigenvalue.

It is significantly different from coupling of pre-selected only system
with expectation value equal to the weak value.

Weak value of an observable at time t represents an effective
coupling to this observable during infinitesimal time.

Page 39/39



