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Abstract: <p>Fault-tolerant quantum computers will compute by applying<br>
a seguence of elementary unitary operations, or gates, to an<br>
error-protected subspace. While algorithms are typically expressed<br>
over arbitrary local gates, there is unfortunately no known theory<br>

that can correct errors for a continuous set of quantum gates.<br>
However, theory does support the fault-tolerant construction of<br>
various finite gate sets, which in some cases generate circuits that<br>

can approximate arbitrary gates to any desired precision. In this<br>

talk, | will present aframework for approximating arbitrary qubit<br>
unitaries over avery general but natural class of gate sets derived<br>
from the theory of integral quaternions over number fields, where the<br>
complexity of aunitary is algebraically encoded in the length of a<br>
corresponding quaternion. Then | will explore the role played by<br>
higher-dimensional generalizations of the Pauli gates in various<br>
physical and mathematical settings, from classifying bulk-boundary<br>
correspondences of abelian fractional quantum Hall states to<br>
generating optimal symmetric quantum measurements with surprising<br>
connections to Hilbert's 12th problem on explicit class field theory<br>
for real quadratic number fields.</p>
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Quantum mechanics

{alUl)|* = Pr(aly)
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Quantum circuits

Sequence of 1-qubit U, (C) or 2-qubits U, (C) unitary gates producing an element of U,n(C).
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Fault-tolerant quantum gates

braid group B,, defined by
SU(2), Chern-Simons TQFT

Physmai error < 10~ e iﬂ il [HJ{fH ] I
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Quantum capacity

' Decoder
Noisy quantum channel Encoder
o —— — .
| - AR —».— N —b.—h MR
; ./.‘ - I
e 7T N D
input output 2 .
reversible interaction with C—
e —_— N —_ —_— IHREANRE
inaccessible environment e - . .
U:A>BQ®E encoded data noisy physical
qubits qubits

N(p) = TrgUTpU
Density matrix Trp =1,p = 0 Quantum capacity Q(N') =

#encoded qubit: ®
#phy51cal qubitse

o Z POl | = Trg| PNV Ultimate limit to our ability to correct quantum errors
Purlflcatlon Y)Y EAR®R Contrary to classical case, no general formula known
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Some exam P les Quantum capacity Q (V') = max ~oncoded qublts ©

#physical qubits

Qubit flip channel

Q=1-plog(p) — (1 —p)log(l—p)
p :> (L=pp+p(Y5)p(14) \/

Qubit depolarizing channel
(popular model for studying fault-tolerant gates)

p .@@(1—19)/)% 01)  Q=7?2?

In particular, we don’t even know when Q = 0.
All we know is that the threshold p™* such that Q = 0 for every p = p”* satisfies
2552 <p* <1/3.
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Superactivation of quantum capacity

-

(A) «

(B) «

26 SEPTEMBER 2008 VOL 321 SCIENCE www.sciencemag.org A Vg )
E[D
REEE) N 1
— N =5
Quantum Communication with
Zero-Capacity Channels c— P =3
kGraeme Smith™* and Jon Yard? - TR
o D,
N
04+0 > 0 = I
nawre | Quantum communication with Gaussian channels € U(L*(RY))
photonics | of zero quantum capacity via metaplectic
. ‘ representation
Graeme Smith'*, John A, Smolin' and Jon Yard of Sps (R)
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Error-correcting unitaries
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In practice, e.g. quantum chemistry algorithms claim to be useful if errors e = 107¢ — 10716

Open question: how to correct errors for a continuous family of gates???
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Fault-tolerant gates

Fortunately, we do know how to error-correct certain discrete gate sets
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Get arbitrary gates by compiling

* This talk: Poly-time algorithm for e-approximating
a given unitary U € SU(2) with an O(log(1/¢))-
length circuit over a very general class of gate sets

Compilers

Principles, Techniques,
s and Tools

* Optimal up to constant factors

* Generalizes most existing known algorithms for
specific gate sets

* Underlying mathematics has roots in computer
science — constructing explicit expanding graphs

* May lead to new quantum algorithms or new Alfred V. Aho
tools for designing fault-tolerant protocols D Ullinan

* Science of quantum gate sets
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The general compiling problem:

Fault-tolerant quantum computer
G ={Uy,.., Uy} cSU(2)
cost(Umi) =0

Compiled unitary
Un,, *** U, U, satisfying
U = Uy, U, U, ||, < &

Target unitary
U € SU(2)

Given &, want to minimize length n, or otherwise cost(Umn voo Up, Uml) = X cost(Up,,)

Q: When does this problem have a solution? A: When (G) c SU(2) is dense

Brute-force search is impractical (exponential memory)
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Solovay-Kitaev algorithm to the rescue?

Textbook approach - standard until 2012
Basic idea: Successive refining of a net using commutators

Implementations:
« [Kitaev, Shen, Vyalyi, AMS 2002]: n = log®*9(1/¢) in log®*%(1/¢) time

* [Dawson, Nielsen, quant-ph/0505030]: n = log®%7(1/¢) inlog?71(1/¢) time
However:
21

* Depressing gate counts —in practice, R, (a) to error € = 10716 needs n ~ 15000 T-gates
* Volume argument: O(log(1/¢)) lower bound on length — can we achieve it? [image source: Nielsen/Chuang, CUP 2000]
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Optimal approximations —when do they exist at all?

Hecke operator averages functions f: 5% — C over finite gate set G

spherical harmonics

1
(Tef)(x) == > f(U'x)
G |G UZEQ fe2(S?) ~ @ C2i+1

JEN

(G) has exponential growth if T; is gapped:

Forevery U € SU(2), ||lU — G"||, < exp(—0(n)) ORI
i.e. O(log(1/¢€)) scaling , " 3 T
y e 'y " "'“x
* [Lubotzky-Phillips-Sarnak CPAM "86] . * % : ‘ | E
* [Harrow-Recht-Chuang quant-ph/0111031, JMP ’02] ’ “ * * * * *
* [Bourgain-Gamburd Inventiones Math. '08] (algebraic entries) e 3K * % ‘ * * wK

(Algebraic = root of a polynomial over Z )
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But “everything” is algebraic!

— - 1
x=(7 o r=( %) 2=( ) Sa=D" Z ”bﬁ’uﬁ 5”’@

Vafa’s theorem: Topological spins 6, algebraic

=0 o) =0 ¢q) ™=0¢) e e
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But can we find an approximation efficiently?

O(log(1/¢))-length g-approximations in O(polylog(1/¢))-time!

Dramatic improvement: R, (2—) to € = 10716 with 150 T gates (or even 50 with other tricks)

s
4
Clifford + T
‘ Kliuchnikov-Maslov-Mosca 1212.0822 PRL ’13
‘] Is h@J Selinger 1212.6253
: ~ W+ M Ross-Selinger 1403.2975

V-basis

ﬁ" * @ Bocharov-Gurevich-Svore 1303.1411 PRA’13
i . (+ others)

Fibonacci anyons
Kliuchnikov-Bocharov-Svore 1310.4150 PRL'14

Is there a common generalization?
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General method

Requirements:
* (G) € SU(2) dense (so we can approximate)
* Characterize G" and (G) (so we can round)

* Factoring in (G) (so we can compile)
Clifford + T
Two-step process: Kliuchnikov-Maslov-Mosca 1212.0822 PRL 13

. . Seli 1212.6253
* Step 1: (Approximate synthesis) Round U to |U],, € G" stlg-gszrlinger 1408 2975
[Kliuchnikov-Bocharov-Roetteler-Yard 1510.03888] ?

V-basis
* Step 2: (Exact synthesis) Compile [U|,, = Uy, ++* Up,, || Bocharov-Gurevich-Svore 1303.1411 PRA'13
[Kliuchnikov-Yard 1504.04350] | Fibonacci anyons

| Kliuchnikov-Bocharov-Svore 1310.4150 PRL'14

Natural data structure?
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Quaternions

H = {qo + q1i + q2j + q3k, q; E R: i* =

H* — SU(2) - SO(3)
q » Uq - Rq

4-~ A SR o
* a’%nﬁ *.-hg,xﬁ 3

qol +i(q1Z + q,Y + q3X)

U, =
! JN(@)

unitary normalization

Quaternion norm N(q) = q§ + q% + q5 + q3 measures length, or complexity
homomorphism: Uy Uy, = Uq.q,, Uaq = £U, fora € R*

covering map: Rq(v1i + v, + v3k) = q(vqi + v2j + v3k)q™', Ryq = R, for a € R*
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Lipschitz quaternion order
L=T7+7Zi+7Zj+7k
L* ={+1, +i,+j, +k} = Qg = quaternion group
Ugx = {1, £iX, +i¥, +iZ} > Ryx= (Ry(m), R, () ) = (Z/2)?

Integral quaternions and the V-basis )\

Rudolph Lipschitz

24 norm-5 quaternions: {1 + 2i,1 + 2j,1 + 2k} - L~ 0 — arccos (_ %) X R VA

1 (T+20 0 o
Vx - U2[+1 - — ( _ ) - R21+1 - RX(Q) '[ Al e Xk
V5 0 1—-2i This all works L X_; [\ ”-ix‘
V)= Uyq = 1 (1 21) — Ryiyq = R, (@) |foranyprime =0 T Ny B
y j NG 21i 12 J YV p=1mod4 b ih g maw
1 AR K KA R XN
V. =U k — —_ - R k =R (6) VTN
z e V5 (—2 1) e i Applications: Compile by trial division
L: = {q € L N(q) € SN} BT, LPS, HRC, BGS noncommutative factoring

Uz, = (Ve Vy, V) = Re, = (Ry(8), Ry (6), Ry(8)) = SOy (z ED = PSU, (z [z%]) = F3
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The Clifford quaternions

1+t+f+k 1+1 1+j 1+ k

¢ =17z[V2 + Z[V2 + Z[V2| — + Z[V2] —

VR g L gz S o)
Isometric to Eg root lattice: (C, Tr@(fjf/(;(x))) = (Fg, %)

where the field trace is Try 7)o (x+yV2) = (x + yV2) + (x — yv2) = 2x.
Uex = binary octahedral group = “qubit Clifford group” = C* /{1 + V2) € SU(2)

& fitd o o B o B B o o o o o ] £t R o o
= {t1, 40 4, 4k 25 50 02 24 2 S B4
e W 7 H P

— Rex = Aut(@ ) — Aut(@) = octahedral group = CX/Z[\/E]X c SO(3)

}mod(l +/2)
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But where is the T—gate???

¢ = Z|V2] z[x/i] bl

1+1+]+k

_+ [\/_]1+k

I'= U1+1T+i six such operators up to units Z[\/f]x = 3+(1 + \/i)
2
(N (1 + 1\7_1)) (\/_) where (x) := xZ[\/_] is principal ideal generated by x € Z[\/_]

Cz = {q € C: (N(q)) = (\/f)nEln € N}

(CHfT) = Ue . > PU, (2 [1,]) = PU, (2|35 5]) = 505 (2 []) = Re.,
ﬂ KMM ‘12 Gosset-Kliuchnikov-

Mosca-Russo ‘14
Sarnak: "“A miracle that Clifford+T is arithmetic”” [IQC talk June ’'15]
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A general framework: maximal orders in simple Q-algebras

,b . . . . . .
(aT) = {q0+Q1l+QZI+Q3k:Qi EF:I.Z =a:]2 T b!l] - _]l=k}

F = number field with ring of integers Zy

e.g. Out[6]= Root[14 - 7211 +25 1% - 144 1117 - g8 111" - 8 111° + 62 #41° - 24 111° + 1117 &, 2]

Maximal order M c (%) is @ noncommuting ring of integers (a spanning Zg-lattice)
Our application: a machine for producing S-arithmetic groups SU(M,, S) = Uy,
where S = finite set of prime ideals in Zz, Ms = {q € M : (N(q)) = [1,esp™,n, € N}
e.g. S = {5Z} (V-basis), S = {V2Z[V2]} (Clifford+T),

Deep theorems: s-arithmetic groups are finitely generated [Borel & Harish-Chandra '61]
and finitely presented [Grunewald-Segal ‘80]

We gave (arXiv:1504.04350 [KY]) first explicit effective method for computing generators

allowing trial division when |S| = 1 and when the algebra has at most one embedding into
m?2%?
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Exact synthesis (step 2) example: factoring on a tree

p p? p°
e When S = {p} can build a
gMq~! | (N(p) + 1)-regular tree with a
- - vertex for each quaternion
ok o Factoring = path finding
M .
frees -

(a—:) = quaternion algebra over number field F

W M = maximal order
p = prime ideal of Zg
SU(M,p) = {Uy:q € M,N(q)Zr = p™,n € N}
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Exact synthesis (step 2) example: |S| > 1

p p? p

. Can also compile for e.g.:
aMa-L cliff+T+v: S = {V2Z[v2], 5Z[v2]}

¥ . (but now it is no longer a tree)
M@
0@~
M &
\

(aF—b) = quaternion algebra over number field F
. M = maximal order

p = prime ideal of Zg
SU(M,p) = {Uy:q € M,N(q)Zr = p",n € N}
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Approximate synthesis (step 1)

Input:

Output:

F = totally real number field

’

%) = totally-definite quaternion algebra over number field F

=

M = maximal order
p = prime ideal of Zg
SUWM,p) ={Uqs:q € M,N(q)Zp = p",n € N}

€ = quality of approximation
¢ = z-rotation angle

Target qubit unitary

- e_i‘p/z 0
R.(9) = ( 0 eiwz)

Pirsa: 16060049

q € M such that

L g =R(p)||, < ¢
2. N(q@)Zpr = p*, where

qMqg!

Llog(N(p)) <4log(l/e)+C
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Approximate synthesis (step 1)

a,b
q=QO+Q3k+Q1i+q2j€ZFL=ZKGBZKc]v[c(T)

CM field ~——

K = F(Va) 1. Sample lattice 2. Solve integral norm equation
e points Z from N(q)Zy = p" over to ensure that g € M
o« convex body
: F: > |+ Reshape convex * Postselect for easy instances
body by solving * Reduce arbitrary easy instance to
approximate CVP in constant size instance using LLL
unit lattice Zz /{+1} | | * Efficient algorithm assuming number-

||qu _ Rz(qqo)“2 <€ theoretical conjecture
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A Fibonacci guaternion order

_Zx/§+1]+Z[\/§+1'1+i+Z[\/_+1] !\/_+1]]+k \/52_1,\@24_3
3 Al Q(V5)

Urx = image of “even” subgroup of B (infinite unit group)

Full image of B; with S = +/5F

Only unitary for some embeddings since Q ( /\/_2_ ) not a CM field

Exist further generalizations for SU(2), CS-theory

Asymptotically Optimal Topological Quantum Compiling Computing fundamental domains

Vadym Kliuchnikov!, Alex Bocharov*, and Krysta M. Svore® for Fuchsian groups
Vnstitute for Quantum Computing and David R. Cheriton School of
Computer Science, Univ. of Waterloo, Waterloo, Ontario (Canada)
Quanturmn Architectures and Computation Group, Microsoft Research, Redmond, WA (USA) par JOHN VOIGHT
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Maximal sets of equiangular complex lines (SIC-POVMs)

Consider n equiangular lines in C% spanned by unit vectors

: I 2 1, i =
Y1), ..., |[Py,) € C4 i.e. satisfying |(1/)i,1/)j)| =\ i :#j fora < 1.

1

Easy to prove that n < d?, and if n = d? then a = —.
d+1 SIC-POVM
There are computer-assisted proofs in huge number fields that orbits of ind =2

Heisenberg group (X4, Z4) achieve n = d? ford = 2 — 20, 24,28,35,48
Inexact numerical evidence up to d=323 [Scott, Scott-Grassl, RBSC, Zauner]

0 1 1l GENERATING RAY CLASS FIELDS OF REAL QUADRATIC FIELDS
1 q, VIA COMPLEX EQUIANGULAR LINES

Xa = L ) Zg = .
; 1 0 d—1 MARCUS APPLEBY, STEVEN FLAMMIA, GARY MCCONNELL, AND JON YARD
d

AnstTracTt. Let K be areal quadratic field. For certain i with sufliciently small diseriminant we

. . : roduce explicit unit generators for specific ray class fields of K using a numerical method that
Exists [1f) € C? generating SIC-POVM is such that arose in the study of complete sets of equiangular lines in C¢ (known In quantum informat

arose in the study of complete sets of equiangular lines in €% (known in quantum information as
symmetric informationally complete measurements or sics), T'he construction in low dimensions

Wa-1
Ga|OIS Closure Of Q ( ' ‘ equa|5 ray C|aSS suggests a general recipe for producing unit generators in infinite towers of ray class fields above

w d l'bf arbitrary /X and we summarise this in a conjecture. Such explicit generators are notoriously difficult

fleld Of Q(\/(d e 3)(d <+ 1)) W|th COI’\dUCtOI’ (d)OO. to find, so this recipe may be of some interest.

arX1v:1604.06098v1 [math.NT| 20 Apr 2016
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Thanks for listening!

Quantum capacity can be superactivated

Poly-time algorithm for compiling 0(log(1/£))-length E-
approximations, which is optimal

sets generating arithmetic groups.

SIC-POVMs -> Hilbert’s 12th problem for real quadratic fields, §
a holy grail of class field theory

The future:

* Qudit, and multi-qubit codes.

* Fault-tolerant protocols and Clifford hierarchy.

* New algorithms?

* Explicit quantum expanders? Ll ut R

* Existence of SIC-POVMs via arithmetic models of Weil SRAENEE R
representation constructed via Galois cohomology? Un|versg|

A general quaternionic framework for producing qubit gate i MO‘H’] |S ,
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