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Abstract: In classical mechanics, an action is defined only modulo additive terms which do not modify the equations of motion; in certain cases,
these terms are topological quantities. We construct an infinite sequence of higher order topological actions and argue that they play a role in
guantum mechanics, and hence can be accessed experimentally.
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Changing the action without changing the equation of motion
B

a dynamical system — the action — a stationary point
— the equation of motion

different actions — the same equation of motion

C: an oriented curve
A: a differential 1-form
Add S = fCA to the action

The first variation:
6S = [ L5 A= [ (dis, +i5.d)A

= (AbxVac + [(8uAy — 8yA,)5x dx”
%s.. the Lie derivative

§5S =0, 6x|;c=0=>dA=0
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Closed 1-forms

Ais closedif dA=0
Ais exactifA=d6

Every exact form is closed
Not every closed form is exact

Aisexact = S = fc d 6 = 0 identically

We are interested in closed 1-forms which are not exact.
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Topological terms

Ais closed = closed curves C are special

Small deformations of such C do
not change the value of S = f A

dA=C

S depends only on global properties of C
= S is a topological quantity
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Topological terms
Ny

A*: the vector space of such 1-forms that dA= 0, A # d6 for any 6

We will show that A* = U .,AP).
Each space A®) is recursively constructed from spaces A, q < p.

The space AV is generated by the elements of the first cohomology
group H'(M).

If M is simply connected, then H'(M) is trivial and the topological
term vanishes.

If M is non-simply connected, then H'(M) is nontrivial and the
topological term can be nonzero.

All elements of AV are local quantities and all elements of A’ for
p = 2 are nonlocal quantities; the degree of nonlocality increases
with p.
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Topological terms

S* = fc A*: a vector space of topological terms for a given C
G — UpZIS(p) and S®) = fc AW®)

A given closed curve C belongs to one of the homotopy classes
which are the elements of the fundamental group G = m,(M).

The value of ch is the same for all curves in a class.
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Topological terms
B

In quantum mechanics, the elements of S* should form abelian
representations of the group of allowed curves.

This leads to the set of subgroups G, = {G,},>; such that the
elements of S”) form abelian representations of G,.

This means that a topological term of only one order will occur in
any action.
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Topological terms

No reason to study topological terms in classical dynamics.
Such terms are important in quantum dynamics.
S is responsible for the Aharonov-Bohm effect.

We argue that the higher order spaces S/, p > 2, can also lead to
measurable effects in quantum-mechanical systems.
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Homology and cohomology groups

A 3-dimensional non-simply connected space: M = R>\T

disjoint tubes T; = C; x D,
a closed curve C;
a disk D,

T'=UqenT;
M<i<n [} = O

Pirsa: 16060046 Page 10/52



Homology and cohomology groups

Various topological properties of M can be deduced from its
homology and cohomology groups.

The first homology group H,(M) is a group of closed curves
modulo those which are boundaries of surfaces.

The first cohomology group H'(M) is a group of closed 1-forms
modulo exact forms.
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Singular gauge

{0D;},<i<y is a basis of H,(M)
{A;}1<i<y is a basis of H'(M)

De Rham theorem: the 1-forms can be chosen such that the two
bases are dual to each other, f ap Yy = 0.

This duality condition cannot be uniquely solved for 1-forms; a
convenient particular solution is

Ail(x)= fyeL’, S(x—¥) Diycqes dxT Axdy”.

%, is an oriented surface, 0%, = C,
* is the Hodge star operator.
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Singular gauge

Ai(x)= J‘yeE; o(x _3’)213(153 dx® A *xdy*“

supp F; = C;
SUPpPA; = %,
fCAi =n;, n; € Z

A closed curve C which intersects
2; once in the positive direction
contributes 6; to the integral fc A;.
The duality condition follows.

12 /50
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The first order topological terms

We define AV as a vector space with the basis {A;};;<y-

For a given closed curve C, there is an associated vector space of
first order topological terms S = [ AW,
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The second order topological terms
Leti#j.
Suppose C; and C; are unlinked.
Consider a second order 2-form F;; = A; AA;.
dFU - F[' AAJ _A[' AF] = 0 since FI'M —_— 0, Fle =0

Modulo a constant factor, F;; is a unique closed 2-form which can
be expressed in terms of A; and A;.

dF;; = 0 = We can define a second order 1-form A;; by dA;; = F;;.

C; and C; are unlinked = %, and X; can be chosen to be disjoint
= dAU — 0.

14 / 50
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The second order topological terms

A particular solution of dA;; = F;; is A;; = 57,A; — 3A;Y;.

Y. =0;+ fI.A,-, 0; is a constant.

A path T' is the part of C which starts at x, and ends at x.
The orientations of C and I" agree.

We define A®) as a vector space with the basis {A, ih<icjen-

For a given closed curve C, there is an associated vector space of
second order topological terms S® = [ A®.
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The third order topological terms

Let i # j # k.
Suppose the first and second order linkings for (C;, C;, C;) vanish.

Consider a third order 3-form F;, =A;; ANAy +A; ANAj.
dFijk — FU /\Ak _AU 7A\ Fk -+ Fi AAJk _Ai A\ ij
=0

Modulo a constant factor, F,;, is the unique closed 3-form which

can be expressed in terms of the corresponding elements of A"
and A®,
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The third order topological terms

dF;;; = 0 = We can define a third order 1-form A;;; by dA;;, = F;jy.

The first and second order linkings for (C;, C;, C;) vanish
= (Z,%; Z}k) can be chosen to be disjoint

= dA;j =

A particular solutions of dA;;, = 0is A, = v Ay — A7 k-

i+ f A;j, 0;;is a constant.

We define A®) as a vector space with the basis {A, ik bt ke

For a given closed curve C, there is an associated vector space of

third order topological terms S®) = [ A®).

&
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Higher order topological terms
B

Proceed to iteratively construct topological terms of all orders.

The vector spaces {A”} are related to what is known in algebraic
topology as the Massey products of cohomology groups.
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Defining fields inside tubes

So far the spaces A?) were defined only on M = R*\T.
We now extend these definitions into the interiors of the tubes T.

Such extensions are always possible if certain topological
restrictions are satisfied.

To define the space AP, all spaces A9 with q < p have to be
defined.

If we assume that all A9 with q < p are defined, then we denote
R a set of additional restrictions needed to define the space AP,

R are constructed iteratively.

19 ()
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Restrictions for the second order fields

Consider extending A;; inside T; for i # j.

This extension is possible only if dF;; = 0 inside T;.

= f op Fij = 0.

However,

faTiAi NAj = fT,- d(A; AAj) = fc,-Aj'

There is an obstruction to such a procedure unless fC!- A;=0.

No new restriction is needed to extend A;; inside T;.

Therefore, A®) can be defined only if a set of restrictions

R = {fC A= O}E#J_ is satisfied.

= All pairs of distinct loops (C;, C;) should be unlinked.
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Restrictions for the third order fields

Consider extending A, ;. inside T;, T;, and T for i # j # k.

Reasoning as above, we find that A®) can be defined only if a set of

restrictions R'*) = { [ Aj = 0}_ is satisfied.
G i#j#k

= The second order linking between any triple of distinct loops
(C;, Cj, Ci) should vanish.

22 /50
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Restrictions for the higher order fields

Proceed iteratively to construct higher order restrictions R?,
4<p<=<N.

To construct all spaces {A®? )}1Sp$N, the set of curves {C;} has to
satisfy the restrictions R = UlSpSNR(p)'

As a curious observation, note that the simplest topological
arrangement of loops (no linking up to the given order) provides
the richest structure for the topological term.
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Free generators

G is of infinite order and it is freely generated by a set of
generators {a,},<;<y, which are homotopically equivalent to

{aDi}ISiSN‘

A generator a; is defined as a closed path in M, which starts at the
point x,, intersects %; once in the positive direction, does not
intersect any other X;, j # i, and ends at x,.

The inverse path ai_1 is the path a; traversed in the opposite
direction.

To multiply paths, we compose them in such a way that the end of
the previous path is the beginning of the next path.
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Explicit expressions for the topological terms

&

Homotopy classes of paths are labeled by finite sets of integers
(Nyqy...5NNy,---,Nq,..., My ), and representative paths from such
classes are given by C =a/" ---a, ---a " a M.

1 N 1 N

Straightforward computation gives

Sijk =

r
C
r

C
r

Jc

Ai: E n[-if,
i’

Aij = %[51'51 =S8+ >, oupmny |

if’jf

1

+ E o-lllfkfnllfnjjfnkkl],
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Explicit expressions for the topological terms

&

Homotopy classes of paths are labeled by finite sets of integers
(Nyqy...5NNy,- -+, Nq,..., Ny ), and representative paths from such
classes are given by C =a/" ---a,M ---a " a V.

1 N 1 N

Straightforward computation gives

Sijk =

r
C
r

C
r

Jc

Ai: E n[-if,
i’

Aij = %[51'51 =S8+ D, oupmny |

if’jf

1

+ E O-lllfkfnllfnjjfnkkl],
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I’I,J‘I,kl
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Explicit expressions for the topological terms

1, (<]
Tij = 9 C

—1, 1>

1, i<j<kor k+2<j+1<i
Oijk = 1 .

—1, otherwise

Expressions for higher order topological terms are similarly found.
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Non-additivity for multiplicative paths

Elements of SV depend only on a path

= they are additive for multiplicative paths,

S;(CC") =5,(C)+S,(C).

Elements of S(Y) form abelian representations of the group G.

The situation is different for elements of S’ for p > 2.
They depend on both the path and the location of the point x|,
through constants {5,}, {6;;},....

Since the constants can be different for different loops in a product
of loops, these topological terms are not in general additive for
multiplicative paths.

However, there is a particular set of terms that are additive.

30 y()
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The abelian property for the second order fields

Sij = LAU' - ‘;'[51'5;' —5i0;+ Z C’i’f’”ii’”ﬂ’]
i',j

{6,} depend on x,
$®@ is independent of x, only if S is the zero vector space.

It can be shown that in this case a closed curve C is a product of
commutator loops.

A commutator loop is a path [g,,g,] = g,8.8,'8, ', where g; € G.

For the product of commutator loops, an element of $'® is the sum
of the corresponding terms for each component,
SU(CC’) = SU-(C) + S,j(C’).
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The Borromean rings

a,

43 /50
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The Borromean rings

a,
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Higher order quantum phases

Computations via the topological terms.

p=1
C:a?ia S;=n;, ¢;=2ES9;
p=2

C= [a?isa;j]: SU =n;n qu — K2§ZSI-J~<I>1-<I>J-, K2 = const

j?
General order p
¢)f1...ip - Kpgpsil---i,,q)il - .(I)il,,’ KP = const

Except for K; =1, constants K, are undetermined.
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Higher order quantum phases

Computations via the topological terms.

p=1
C:a?ia S;=n;, ¢;=2ES;9;

p=2

. n;
:[arlsajj]s SU: i J’ (PU_KZngI](I)(I) Kzzconst

General order p
Pi..., = K,&PS; . @i -+ ®; , K, = const

Except for K; =1, constants K, are undetermined.
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Higher order quantum phases
B

For path integrals in non-simply connected spaces, the phase of the
wave function in quantum mechanics has to form an abelian
representations of the fundamental group.

= Higher order boundary terms can be included and the phase of
order p is fCA, where A€ AP) and C € G,.

Quantum mechanics imposes restrictions on what elements of S’
are allowed to contribute to the phase.

If a charged particle is transported along a closed curve C outside
a solenoid, then its action changes by fc A, where A is the gauge
potential of the magnetic field in the solenoid.

The Aharonov-Bohm effect: the wave function acquires a phase
¢ = End, where & = e(hic) ™!, n is the number of times the curve
wraps around the solenoid, and ® is the flux of the magnetic field.

50
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Higher order quantum phases

Computations via the topological terms.

p=1
C:a?ia S;=n;, ¢;=2ES59;

p=2

. on;
:[arlsajj]s SU: i J’ qu_KZngU(I)q) KZZCOHSt

General order p
Pi..., = K, &S, . @i -+ ®; , K, = const

P

Except for K; =1, constants K, are undetermined.
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Higher order quantum phases

Computations via the topological terms.

p=1
C:a?ia S;=n;, ¢;=2ES9;

p=2

. n;
:[arlsajj]s SU: i J’ (PU_KZngU(I)(I) K2:C0nSt

General order p
bi..., = K,&PS; . @i -+ @, K, = const

P

Except for K; =1, constants K, are undetermined.
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Experiment

(Can someome , please , do it.)

~ n
magretic N o
solenoid

/
¢! :
M
r {
(¥ G

oF .

magnetic
so\enoid
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Experiment

C; = Cju s
Observe the phase ¢, ,(C;) = K,(e/hc)*®, ®,

Note:
¢1(C3) =0
d’z(cs) =0
$1,,(C3) #0

Generalized Dirac quantization condition: K, = (27) "

Needs to be checked experimentally
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Higher order quantum phases

Computations via the topological terms.

p=1
C:a?ia S;=n;, ¢;=2ES9;
p=2

C= [a?isa;j]: SU =nn qu — Kzgzsij¢i¢j, K2 = const

j?
General order p
¢1‘1...I'P - Kpgpsil---i,,q)il - '(I)i,n’ KP = const

Except for K; =1, constants K, are undetermined.
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Higher order quantum phases

¢il"'f;: = Kpgpsfl...qu)il — "I’,-P, Kp = const

We are not aware of any fundamental quantum-mechanical
principle forbidding the presence of terms with p > 2 and
therefore suggest this be tested experimentally.

An argument allowing to calculate the constants K, for p > 2.

From the Aharonov-Bohm result, if (27)"'£®,; € Z, then the phase
¢, is unobservable. If this is also the case for the higher order
phases, then we find K, = (27) "'

40 /50
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Higher order quantum phases
B

A possible objection: all elements of A®) for p > 2 are nonlocal
quantities.

After addition of these terms, the coordinate and momentum
operators are still local, but the hamiltonian operator becomes
nonlocal.

This nonlocality, however, has no local consequences. (In the
magnetic field analogy, the only measurable effect is the force
acting on the particle and it is absent outside the tubes.)

This is analogous to the first order term having no local
consequences despite being the nonlocal operator itself.
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Conclusions

&

The action of a system is not uniquely defined since arbitrary
topological terms can be added to the action without
changing the equation of motion.

Although classical dynamics is immune to such terms, they
affect the quantum dynamics.

These terms can be classified according to their topological
properties.

Each term contributes a phase to the wave function, the
functional form of which is easily distinguishable from the
phases due to terms of other orders.

In particular, the phase of order p is proportional to the
product of p fluxes.

The usual Aharonov-Bohm phase corresponds to p = 1, and
its simplest generalization is the Borromean ring phase which
corresponds to p = 2.

Page 50/52



Conclusions
[y

e Higher order quantum phases can clearly exist in any physical
situation that supports higher order linking of a wave function
with fluxes, e.g., superconducting loops containing Josephson
junctions that have higher order linking with solenoids.

e It should not be difficult to conduct an experiment capable of
answering the question whether higher order topological
phases play a role in quantum mechanics.

e Can someone, please, do the Borromean ring experiment!
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