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Abstract: The Kochen-Specker (KS) theorem can gives rise to logical paradoxes under pre- and post-selection in which the contextual behavior is
confined to specific observables of a system. Weak measurements allow direct experimental observation of the nonclassical behavior of these
specific observables. This presents an experimental advantage over other tests of KS inequalities which rule out a particular class of counterfactual
noncontextual hidden variable models, but can never specify where the contradiction occurs, nor make any direct observation of its consequences.
The confined contextuality can always be interpreted as alogical pre- and post-selection paradox, such as the 3-box paradox, the Quantum Cheshire
Cat, or the Quantum Pigeonhole Effect. This confined contextuality was recently observed using neutron inferometry for KS sets of up to 17 qubits.
Details of the theory and experimental results will be presented.
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Overview

@ The Bell-Kochen-Specker (BKS) theorem shows that quantum
mechanics forbids a noncontextual hidden variable theory (NCHVT)
with outcome determinism

@ This is because the predictions of any such NCHVT disagree with
quantum predictions by violating the ‘sum rule” or ‘product rule” in at
least one measurable basis, and such violations are never observed in an
experiment,

@ The only way that the NCHVT can remain plausible is if the violation is
counterfactual, in the sense that is 1s never located in the basis that 1s
measured.

@ By considering sub-ensembles that are both pre- and post-selected, it is
possible to confine this violation to a specific basis, where it can be
observed by performing weak measurements of the projectors in that
basis, and finding anomalous weak values.
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The 3-qubit Square
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@ Each row and column of the Square is a set of three mutually commuting
observables that define a joint measurement basis.

@ Any NCHVT with outcome determinism must assign a predicted
eigenvalue +1 to each of the nine observables of the square. These
assignments are noncontextual because the prediction is the same if
either the row or column i1s measured.
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The Weak Value

We call an ensemble of experiments in which a given state [0} is prepared in
each run, and the outcome |¢) is obtained by a final measurement, a pre- and
post-selected ensemble. For such an ensemble, the weak value of every
observable A of a system. with spectral decomposition A = 3, \;I1', is defined
as,

(G | (ol

Ay = Z\ o0 = > AL (1)

()|( F

[f a pointer 1s weakly coupled to the system during the time between pre- and
post-selection, such that the interaction introduces almost no disturbance, the
ensemble average shift of the pointer is given by the weak value.

A recent result from Pusey [Phys. Rev. Lett. 113, 200401 (2014)] shows that
any projector with a weak value whose real part is above | or below 0 is a
proof of contextuality, using Spekkens generalized definitions of
noncontextuality [Physical Review A 71.5 (2005): 052108].
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Confined Contextuality

@ Choosing a pre-selection [17) = | + X)| + X)| + X) and post-selection
|0) = |+ Y)|+Y)|+7Y) fixes some of the predictions of the 3-qubit Square.

@ From the Aharonov-Bergmann-Lebowitz (ABL) probability rule, it also
follows that certain other eigenvalue assignments are forced, which
results in a violation of the product rule confined to a specific basis.

@ We directly observed this confined contextuality in a neutron
interferometer setup by measuring anomalous weak values of projectors
in this basis.
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Projectors 1n the Classical Basis

The rank-2 projectors in the Z basis (or classical basis) of the 3-qubit Square
can be written as.

(| +Z,+Z,+Z+Z, +Z,+Z|+ |- Z,-Z,-Z){-Z,-Z,-Z)|.
B ) |+ Z,.-Z +Z+Z.-Z . +Z|+ |- Z,+Z,-Z){(-Z,+Z.-Z)|. }
¢ |-Z,+Z,+Z\(-Z,+Z,+Z|+ |+ Z,-Z,-Z){+Z,-Z,-2Z|, [’
|~ Z.-Z 42N -Z.~Z.+Z| + | + Z.+Z,~ZW+Z.+Z. -7

The weak value of the first projector in B. is,

(0l e) 83 ((+Y]+Z)(+Z| + X) 8 ((4Y] - Z)(-Z] + X)\'
= o ( (+V[+ X) ) H( (+Y]+ X) )
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Single-Qubit Weak Measurements

This factorization shows that when weakly measuring these projectors, each
qubit can be measured independently. We measured the weak values of each
7/ (the jth qubit) separately in our experiment, and computed the weak values
of the single-qubit projectors as,

(1 Z)(+2)), = (1 £Z0,) 2.

This method enabled us to compute the weak value of any 3-qubit projector in
By¢. from single-qubit measurement data.

The 3-qubit Square can be generalized into the N-qubit Wheel for all odd

N >3, and all of the preceding logic for the 3-qubit cases follows exactly. We
measured Z). ~ i for 17 different qubits, which were actually 17 different
ensembles of many runs through our apparatus, and thus we consider all
N-qubit Wheels forodd 3 <N < 17.
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S-qubit Wheel
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Contextuality Witness

~ ' . N ' N r [
For each of the N-qubit Wheels we obtain a classical basis BY. = {I1'}

N — . .
N=1 rank-2 projectors. We construct the general contextuality

containing 2
observable CV for any specific choice of basis {II'} and pre- and

post-selection as,
YN=-1

i=1
with s; = sign[Re(II!,)]. using the theoretically predicted value of I1! .
Regardless of the signs s;, if all 0 < Re(Il},) < I (noncontextual), then
Re(CN) > 0. Therefore, any Re(CY) < 0 is a proof of contextuality.
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Results

Violation
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Experimental Setup

The experiment was conducted at the Institut Laue-Langevin in Grenoble
France using neutron interferometry techniques. The quantum system in the
experiment was the neutron spin degree of freedom (DOF), and the weak

measurements were performed by coupling this to the path DOF in the
interferometer.

O
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Generalized Contextuality Witness

The confined contextuality proof we used in our experiment can be
generalized to a test that uses all pre- and post-selections that occur 1n the
experimental setup, such that the complete ensemble 1s considered in every

experiment. Let the pre-selection [¢;) be any of the d = 2N possible outcomes
of an initial measurement of H@’\ X on N qubits, and also let the
post-selection | ) be any of the  possible outcomes of a final measurement
of ]_I(m Y. For each case, the Contextuality Witness can be written as,

WN-1

/ / E f\
C!,\ = l - Z \”A I_IU ) (

=1

N

Combining the data from all runs of the experiment, we arrive at the quantity,

d d (r )/\ |( ) ”
{
W= 3 3 syl ()
J ok <(‘)f\‘( .f) i.j.k
and any W < 0 is a proof of contextuality.
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The Quantum Pigeonhole Effect

We now consider the ontological interpretation of these eigenvalue
assignments to the observables of the N-qubit Wheel, including the logical
Inconsistency of the product rule being violated in the classical basis.

The pigeonhole principle states that if one places all of M > N pigeons into N
boxes, then at least one box must contain more than one pigeon.

Let each qubit be a pigeon, and consider the two Z eigenstates as |+ Z) = |L)
and | - Z) = |R) as corresponding to two boxes, left and right. The correlation
ZZ = —1 between every pair of qubits in this model, obtained using the ABL
rule, then implies that regardless of how many pigeons we place in the two
boxes, no two pigeons are ever in the same box, in direct violation of the
pigeonhole principle. We call this violation the quantum pigeonhole effect.
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The Quantum Cheshire Cat

We can also consider confined contextuality in the Peres-Mermin Square. a
different proof of the BKS theorem for 2 qubits, by pre- and post-selecting the
states that assign eigenvalues +1 to six observables of the two bottom rows.
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The Quantum Cheshire Cat (continued)

The ABL rule has forced us to conclude that ZI = +1, IZ = +1, and ZZ = -1,
which is an obvious violation of the product rule. We again consider an
ontological interpretation of these contradictory eigenvalue assignments.

Let the first qubit represent the path (|L) or [R)) a neutron takes through an
interferometer, and the second qubit represent its spin (| 1) or | |}). From the
first two forced values, we would conclude that neutron takes the left path and
has spin up, however from the last term we would conclude that spin up can
only be on the right path (or spin down on the left). This logical inconsistency
can be interpreted as indicating that the spin becomes disembodied from the
neutron, allowing the spinless neutron to take the left path, while the
neutronless spin takes the right path. We refer to this phenomenon as the
quantum Cheshire Cat.
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Pre- and Post-Selection Paradoxes

There is also a general class of logical pre- and post-selection paradoxes were
developed using the time symmetric formalism of quantum mechanics,
including the 3-box paradox. These paradoxes are ‘logical’ in the sense that
the relevant projectors are assigned only values 0 and 1 by the pre- and
post-selection and the ABL rule.

[t has recently been shown by Leifer and Pusey [arXiv:1506.07850] that every
logical pre-and post-selection paradox can be generalized to a state-dependent
proof that rules out measurement-noncontextual models with outcome
determinism. Every such proot depends crucially on projectors that have
anomalous weak values given the pre-and post-selection, and so these are
simply further examples of confined contextuality.
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The 3-box Paradox

Consider a pre-selection [¢)) = (|1} +[2) +13))/v/3 and post-selection

[0) = (1) +]2) = 13))/+/3. such that a particle begins and ends with equal
probability 1/3 to be found in each of three boxes. The weak values of the
projectors onto the three boxes are, [1)(1],, = 1, [2)(2],, = 1, and |3)(3],, = -1

To arrive at the paradox, we use the ABL rule for two different coarse-grained
bases with cardinality 2: The basis By = ([1){1] +|3)(3].]2){(2]). and the basis
B> = (|12)(2]| + |3)(3].|1)(1]). The ABL formula gives probabilities,

1)

Papr(12)(2] = 1|B1) = Papr.([1)(1] = 1{B2) = TSN L ()

but these two statements are contradictory - the particle cannot always be
found in both boxes. Note that without the negative weak value of projector
13)(3] it would be impossible to construct this paradox or any other like it.
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Interpreting the 3-box Paradox

Instead of assigning ontological realism only to ABL-forced eigenvalues of
projectors, we may consider treating the weak value as ontological
assignments. For the 3-box paradox, the interpretation is that boxes 1 and 2
literally do always contain the a particle, while box 3 contains a ‘phantom’
particle with negative properties for all of its observables that give rise to the
weak value [3)(3|,, = —1. The sum of the weak values of the three projectors
In this basis must be still 1, and so we can conclude that there was a pair

creation from the vacuum of an extra particle and its negative counterpart, and
that this pair annihilated prior to the post-selection.

[f we consider the confined contextuality in the 3-qubit Square and the
Peres-Mermin Square, the weak values in the classical bases are (l, i1l —l,)

gical

which give rise to similar 4-box paradoxes, but we obtain an ontolo
interpretation in terms of phantom particles which is quite different from the
pigeonhole effect or the Cheshire cat. Determining which of these ontologies
Is more physical remains an interesting question.
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Conclusions

@ We have shown that pre- and post-selection can be used with certain
proofs of the BKS theorem to confined the conflict between quantum
mechanics and noncontextual realism to specific observables of the
system.

@ We have shown that this confined contextuality can be observed by
performing weak measurements of those observables in a neutron
interferometry setup and obtaining anomalous weak values.

@ We obtained the conditional correlations ZZ ~ —1 for all pairs of neutron
spins, even though these neutrons never interacted, nor in fact were they
even in the interferometer at the same time.

@ We have examined ontological interpretations of confined contextuality,
including the quantum pigeonhole effect, the Cheshire cat, and the 3-box
paradox with phantom particles.
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