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Abstract: Dynamics in asymptotically anti-de Sitter spacetimes with reflecting boundary conditions are characterized by reduced dissipation as
compared to asymptotically flat spacetimes. Such spacetimes, thus, represent opportunities to study nonlinear gravitational interactions that would
otherwise be quickly damped away. | will discuss two background spacetimes---large AdS black branes in d=4, and pure AdS---where small
perturbations display turbulent behavior and energy cascades driven by nonlinear interactions. In each case, the presence of an unexpected
conserved quantity---a gravitational "enstrophy” around the AdS black brane, and a "particle number" for pure AdS perturbations---significantly
affects the energy flow direction throughout the cascade, and drives energy to longer distance scales. | will comment on implications for
fundamental general relativity questions such as cosmic censorship, and potential for turbulence beyond AdS.
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Introduction

e Asymptotically flat spacetimes, or spacetimes with black holes have
dissipation.

E.g., Schwarzschild

radiation

e For this reason, gravitational perturbations tend to decay rapidly, and
nonlinear perturbations are typically rapidly damped away.

E.g., quasinormal mode ringdown seen by LIGO.
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Introduction

e Asymptotically AdS spacetimes have a reflective timelike infinity instead of null
Schwarzschild-AdS

infinity.

Schwarzschild

BH

radiation

/l\/\l./ ~——

e Large Schwarzschild-AdS black holes have very low dissipation / very long lived
quasinormal modes.

Pirsa: 16060017 Page 4/48



Introduction

* Pure AdS spacetime (no black hole) has no source of dissipation.

e Quasinormal modes are replaced by normal modes, Glopal anti-de Sitter

with no decay.

* Reduced dissipation means that nonlinear gravitational
interactions, including turbulence, can be studied
in the following two backgrounds:

1. Large AdS black holes

2. Pure AdS
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Outline

1. Large AdS black branes (in 4 dimensions)

® Gravity-fluid correspondence

e Kelvin-Helmholtz instability in gravity

e Turbulent decay of black hole perturbations, inverse energy cascades, conservation laws
2. Pure AdS

® |nstability to black hole formation for certain initial perturbations

e [wo-timescale analysis and new conservation law

® |nverse energy cascades and islands of stability
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1. Large anti-de Sitter black branes
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Gravity-fluid correspondence

e Many hints of a connection or analogy between fluid dynamics and gravity:

Black hole thermodynamics Video from Lehner and Pretorius (2010)
t=0.312

Membrane paradigm for black holes

Fluid analogs of black hole spacetimes

Gregory-Laflamme instability of 5d black strings

VS !g

Rayleigh-Plateau instability ———— |

(Wikipedia)
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Gravity-fluid correspondence

e AdS / CFT correspondence: Relates quantum gravity in (d+1) dimensions and
quantum field theory on the d-dimensional boundary.

* There exists a purely classical limit, where

(d+1) quantum gravity —> (d+1) perturbed black brane solutions
to Einstein’s equation in anti-de Sitter

AdS/CFT “gravity/fluid correspondence”

d-dimensional CFT ———— d-dimensional fluid

» By studying dual fluid, we can obtain approximate general relativity solutions
describing perturbed black brane.
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Gravity-fluid correspondence

e Black Brane spacetime:

Bulk: Black Brane

N

Asymptotically AdS

Boundary:
black brane y

/ Impose “boundary metric” = 7] ,;, (mirror)

Einstein Equation holds

e ) N Read off “boundary stress-energy”

=2

P . ! . .
T = Jim e (s = K = (A= 1)

time

F}['}Cl}'ﬁ()

e At late times, the boundary stress-enerqgy takes the form of a relativistic, viscous
conformal fluid. This is derived in a derivative expansion; valid for long-wavelength
perturbations. (Bhattacharyya et al, 2008)

¢ From the boundary stress-energy, can re-construct a bulk metric which solves the
Einstein equation in the derivative expansion.
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Boundary Fluid

e Resulting boundary stress-energy tensor (to 2nd order in derivatives):

T|()-|-|-1-2| g et ok o)
[ e
d-—1

(([’“‘[i“f“’f/ 7*7 ?}}'“)) 7*7 Il[i“b‘

where the viscous part is given by
‘ 1st order in derivatives
1, - 2N0 2nd order

. l . :
F 21T ((-u"r)f,rr/”,} { In/,,,()r,.-u.” F(AM0ua0,™ + 200w, + Aswyaw,”)

N o
shear vorticity

Transport coefficients all functions of the density.

. . . S . ) s
In particular, shear viscosity 7 = - — o e ghacd/d

* There is also a dual bulk metric, which is expressed in terms of Uy, P

" d—1)p :
ds|o) 2uyda’dr 4 r* ("hw { ( m ) 'u;,-u.,,) da' dx'
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Black brane quasinormal modes

* Modes in red are the hydrodynamic modes, which are captured by the fluid.

/ )~ e Plots from Berti, Cardoso, Starinets (2009)

6 T T T T (I e e 6 T T T T T T
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i 4 4
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g .I.Q"‘*
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0L||||L PR S WO TR Wl ob—— o ]
6 5432199012 8 45 6 6 -5-4-3-2-10 12 8 45 6
mH/E’;rT mH/E’frT
shear channel sound channel

* The shear mode has purely imaginary frequency, and for high T, becomes long lived.

e Higher modes not captured by dual fluid, but they decay more rapidly and are not
relevant at long wavelengths.
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Quasinormal modes from the fluid side

e Hydrodynamic shear quasinormal mode <——— fluid shear flow

e Consider a uniform fluid flow, p) = constant

0
b
gy = (1,0,0)
(0
IIW) 0,
linearly perturbed by shear flow, u{;, = u{(t, y)
(1) (1) same as lowest shear
Loy = 115, (¢ y) QNM for black brane
' e i i ' 2k*1)0) et
* Find, for modes ~ ¢ "“!t*"v a dispersion relation |w ~ —i—, = —f—
';[)(l}) I’JT[(”)

We use the fluid/gravity correspondence to study (3+1)-d black hole perturbations
nonlinearly, via numerical simulations of the (2+1)-d dual fluid. We choose initial data
corresponding to shear mode, and study its evolution under the full nonlinear fluid
equations. We also include tiny random perturbations, in order to assess stability.
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Shear flow at low Reynolds number

e The random seed perturbation does not grow. %, remains small.

e Laminar flow matches quasinormal mode decay

=
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Shear flow at high Reynolds number

vorticity field
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Shear flow at high Reynolds number

vorticity field
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Initial instability
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Shear flow at high Reynolds number

Random seed

Initial exponential .
grows exponentially

decay (matches

. : Power law during {
linear eXpeCtat'inS) turbulent cascade ~

/
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Fully developed turbulence

(e) t = 500 (d) t = 900

e Turbulence characterized by inverse energy cascade, which transfers energy
to larger scales.
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Turbulence

e Turbulence in (2+1) dimensional Navier-Stokes fluids:

’

E.g., for an incompressible fluid,
o' + v/ 80° = vd’ 00" — 0' P 0 =
curl

‘ _ In (2+1) dims, single vorticity component
Ow + v 0jw = vd’ djw W = OzUy — OyVUy

* |nviscidly conserved quantity, enstrophy, 7 = /wzrlz.u
* | eads to direct cascade of enstrophy, instead of energy.

® /[nverse cascade of energy takes energy to large scales, rather than small
scales for higher dimensions.
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Turbulence

e Turbulence in (2+1) dimensional Navier-Stokes fluids:

¥ v

E.g., for an incompressible fluid,
O g g A ey e e e
o' + v’ 00" = vd’ 0" — 0" P, b= e
curl

‘ _ In (2+1) dims, single vorticity component
Ow + v 0jw = vd’ Ojw W = OzUy — OyVUy

e |nviscidly conserved quantity, enstrophy, 7 = /wzrlz.u
* | eads to direct cascade of enstrophy, instead of energy.

® /nverse cascade of energy takes energy to large scales, rather than small
scales for higher dimensions.

Page 21/48



Shear flow at high Reynolds number

Random seed

Initial exponential :
grows exponentially
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Mapping from boundary to bulk

* Fluid quantities captured by bulk Weyl curvature invariants

vorticity

Funnels run along tubes

\ (b) » +('-“f(_“(u1.ricfn
' . / o
connecting boundary and horizon

Pirsa: 16060017 Page 23/48



Mapping from boundary to bulk

density

(:’l.) ‘J'“ (".-'! ae ,”(Jt.rl BCD

Pirsa: 16060017 Page 24/48



Validity of correspondence

* |s turbulence really happening in gravity? Or is it an artifact of derivative expansion?

* Pure gravity simulations in (3+1) dimensions (Adams, Chesler and Liu, 2014):
_l. = 2000 t = 2496 t = 3001

\

0 0.005

-0.005
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New intuition for gravity

e Ordinary perturbation theory is not valid in low-dissipation regime.

e As with fluids, define a “gravitational Reynolds number”, to measure the
relative sizes of nonlinear and dissipative terms in the equations.

Long lived QNMs «————— High Reynolds number

/ a\"
PAB I

In this fluid-gravity setup, Ranr o Tiawking L

Fluid side Gravity side
Laminar flow »  Quasinormal mode regime
Turbulent flow » New, turbulent phase
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Extensions / Open Questions

dissipation / high Reynolds number might lead to turbulence. In particular,
long lived modes of near-extremal Kerr black holes have been shown to
exhibit the initial instability (Yang, Zimmerman and Lehner, 2014).

e Conserved enstrophy: Does conservation hold beyond gravity-fluid
approximation? How generally does it hold? Does it act as a cosmic censor?
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Pure anti-de Sitter spacetime

e Anti-de Sitter without the black hole = empty box with reflecting walls

e Linear fields have normal modes with
harmonic time-dependence. In contrast to
black hole case, there is zero dissipation.
Infinite Reynolds number.

e Nonlinearly, mode-couplings transfer

I~
R

e

T

energy between modes in a “turbulent” cascade.

Reflecting boundar
P g Y

e |f sufficient energy transferred to high-frequency modes (short distance

scales), black hole formation may result.
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Stability of AdS

e Question: |s AdS stable to arbitrarily small perturbations? If not, which initial
data collapse to black hole?

Mirror boundary (
condition

.

AdS

Pirsa: 16060017 Page 29/48



Stability of AdS

e Study problem numerically. Initial Gaussian pulse of field:

= 7/2

Pirsa: 16060017 Page 30/48



Stability of AdS

e Study problem numerically. Initial Gaussian pulse of field:

700/2910 (1265) (1.6e+00 , 8.8e-01) =0 r=m/2
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Introduction: Stability of AdS

For initial Gaussian field profile, numerical simulations showed
collapse occurs even for arbitrarily small amplitude.

0.025

0.02

0.015

0.01

0.005

1 bounce
2 bounces
20 25 30 35 40

T

2\

P

(A

irect Choptuik
collapse
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Take € much smaller... @izon and Rostworowski, 2011)

10®

e AdS is effectively a confining mirrored box.
So, a non-gravitating scalar field is
characterized by normal modes.

.| (8
107 |

10t |

I%(t,0)

e (Gravitational focusing effects transfer
energy nonlinearly to higher frequency
modes in a direct turbulent cascade.

10" &

0 200 400 600 B0O 1000 1200 1400 1600
t

N , e High-frequency modes more highly peaked
about the origin, leading to collapse.

10

£2 ?(°1,0)

e “Gravitational turbulent instability”

! t 1 L L i
0 2000 4000 6000 8000 10000 12000 \

%t

Scaling symmetry
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But not all data collapses!

e Buchel, Lehner and Liebling (2013): Depending on width of Gaussian, collapse may

not always occur, e IR | 2 TR N e o A
| &
L
L o=0,1
|
P DR —g=0.3
o I aeg=0.4
s’ : - =00
oY) Cl
2 1 2
ot
.WLK.H:---" W B A LN .|
¥ S
0 S g
Lo e e b b e b
1 2 3 4
agEe

e Question: What distinguishes these initial data?

¢ To make progress, must go beyond numerical simulations.
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Ordinary perturbation theory

e 1storder: Free scalar field in AdS
(/)( l) —l— lz(/)“) = ()

General solution expressed in terms of eigenfunctions / eigenvalues of
differential operator L.:

(i";)(l)({-,.!') = Z (/1_),’(‘ g | /1.!‘(;:'@,‘:’) (‘_‘,’(.I')
J=0 \

wj=27+3

e 2nd order. Metric correction .(1,(,;,)(1,,.z:) from Einstein constraint equations.

o 3rd order: Scalar wave equation with source term cubic in @(1)

b3y + Loy = Sezylo)y]
Commensurate
frequency spectrum
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Ordinary perturbation theory

e Example: 2 modes initially excited

O(0,x) = ([r'”(;rr) - ('1(»:):]
D p(0,2) =0

3rd order calculation

Y

o(t, 2) = eleg(x) cos(3t) + e1(x) cos(5t)] +e*t sin(7t) |+ . ..

e Perturbation theory breaks down after time ¢ o 1/¢”
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Two timescale framework (T TF)

the interactions between modes.

o Allow all fields to depend on “slow time” 7 = ¢°t and expand perturbatively
as before:

¢ = epy(t, T, x) + (3(/)(;;)(/,, T,x) + O(e®)

Jab = .f/[:lgf!"q + ¢? _(/((L.i)(//, 7,2) + O(e?)
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Two timescale framework (T TF)

o At O(¢%), where resonances are encountered in ordinary perturbation theory,
use freedom in A;(7) to cancel them off.

* By requiring 7
‘ ol : (i
- (ITJ‘ = Z bf'(-;;'r)n-A;"-A‘A"”' (TTF)

Elm

resonant interactions are precisely accounted for in dynamics of A,(7).

e Coefficients & ,(j)

., arise from overlap integrals of mode functions ¢;(x).

S;(.;f‘f)”. = 0 unless j + k = [ 4+ m (resonance condition)

e Rest of talk will focus on TTF equations, and how they explain collapse vs
non-collapse.
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Collapsing initial data (full GR simulation)

e |nitial data: Gaussian profile (original Bizon and Rostworowski data)
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Non-collapsing initial data

e |nitial data: Energy I = Z dw?|A;|* evenly distributed between modes j = 0, 1

i

e Solid: Full numerics
Dotted: TTF

0015 . w . -

0.01

0.005

ARALA

d 1500

0 500 1000
{
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Conserved quantities

* TTF equations conserve 3 quantities:

Symmetry
e Energy E = Z/_l;wj | A A; — AJ-(%"U
J
* Particle number N = dw;| Agl° A; — AJ.(;"-W.J”
J
ttoni g () E N~ o dlAG 17
. Hamlltonlan II i ,I ;: "SI.:ﬂrr:.A.'fAf.f/\IA-m - H Z(} (h— -
Jktm J

e Conserved particle number is very unexpected for a real scalar field. It also
holds beyond spherical symmetry.
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Quasi-periodic equilibrium solutions

e Ansatz /1(}21) = (\’.J‘(f- -M)j-"fr’ /))} - R

e 2-parameter family of solutions.

Take parameters to be (E,N), or
(T=E/N,overall scale).

=
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Other families of quasi-periodic solutions

e QP equations are nonlinear, so for given E and N there can be multiple
solutions. Families of QP solutions, labelled by peak mode jr.

|
1029 } -
1062 i
5 ;
S 1095 . T = 23.0 i
i s T =33.0 s,
10-128 L& « T =43.0
x T =53.0
10—161 L T = 63.0
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I()——HM ot S s T e L e s
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Stability of QP solutions

e QP solutions appear to be nonlinearly stable under full numerical simulations:

| 678/2870 (300) (5.9¢+01 ,2.7¢-05)
N

W

A627688420-+02

Ln|ar2_j|

(0.0e+00 , -6.60+01)
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QP solutions as islands of stability

e Claim: Non-collapsing solutions are oscillating around QP solutions.

* Match initial data to QP solution by identifying total conserved N and E.

total N, I

any initial spectrum {F;} [ > quasi-periodic {A;N)(T)}

e Oscillation frequencies (recurrence times) arise from oscillations about QP
solution.
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QP solutions as islands of stability

e Interpolate initial data: 7 = (1 - -)\)Iz‘_f"“““"‘ + )\I«J._;'w

J

E; E

sota A=0 . A=1/2

VavoNVeEV s e e
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Conclusions for Part 2

* TTF effectively models the AdS-scalar system for small amplitude
perturbations for time scales ¢ ~ 1/¢

* TTF has led us to uncover:
* Conserved particle number, energy and Hamiltonian
* Stable quasi-periodic solutions as islands of stability
* Direct calculation of recurrence times

e How much of this extends beyond spherical symmetry?

Page 47/48



Pirsa: 16060017

Overall conclusions and questions

e In the presence of long lived quasinormal or normal modes, standard approaches to
gravitational perturbations break down. High gravitational Reynolds number regime.

e Are there natural high gravitational Reynolds number regimes beyond AdS?
Near-extreme Kerr? Cosmology?

e Turbulent cascades strongly influenced by presence of conserved quantities.
e Are either particle number or enstrophy conserved beyond perturbative level?

e Are there analogs of these AdS conserved quantities in dS spacetimes relevant
to cosmology?

e What role can these quantities play in fundamental gravity questions, including
stability and cosmic censorship?

Thank you
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