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Abstract: In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the
Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A
similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic
cosmologies with ““flat" (including toroidal) and ““open™ (including compact hyperbolic) spatia topology that are initially expanding must continue
to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density
fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate
of the universe, and, in a specific sense, most 3-manifolds are ““flat" or “~“open". Our result has important implications for inflation: if there is a
positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ““flat" or ““open" topology
must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually,
regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also
significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
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Introduction

—Inflation is believed to have problems to start.
—This talk will argue (prove) that one of the reasons of concerns is not sustained
—it will do so by using some interesting mathematics,

 used to answer a very very physical question
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The Problem

Vv
—If we have the inflaton on top of his potential ~—~
—and the space is homogeneous ona ff; patch
—then inflation starts O ¢
{‘ I\]
* Question: how likely is to have an homogenous patch of this size? y

—Here I will first present an apparently compelling argument (at least to me), that if

i f\/a'l)]

Hi < Mpp = prob~e H

—and we will show that this argument is not really correct

—But first, let us open a parenthesis
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FRW Cosmology

—Let us review FRW cosmology

ds* = —dt* + a(t)*d%*
i .lf 12 ¢ ¢ I [ I} I
dX2 = — 17302, dO2 = d6? + sin(6)2de?

1 — kr

; = <41 , Sphere s
k=0, Flat {Q \ S

k = —1 , Hiperboloid A \'

—where L

a(t) = radius of curvature

—Typical evolution

alt)
k=-1 __»
—closed universe: recollapses e
- K
—open and flat: expand forever b
Ay T - Ay = |
) h“"'lw‘ now ;('Illllt"l
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FRW Cosmology

—Let us see that open & flat universes cannot recollapse
* Consider a spatial surface by

—normal vector Ty = (L 0)

—induced metric huw = Quv + nuny

= h()() = h,{),,: =0 y }L,} = Gij

—Einstein Equations ¥
] G,ru/ = 81G ngw i A.q;w )
= Gunt'n’'=8rGT, — Ag,.)ntn”

bk R A
= H*+ A W p—l—q

(L !3 L8
at) k= -1
—If the universe starts expanding, and it turns back S
e = there is a surface with [/ = () YR
: . k L A
* = on this surface — - 0+ = : AN | A
(L2 ‘3 :; 3 bang now s crunch

‘If (p>0&A>0)& k<0 = Impossible
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FRW Cosmology

—Collapse for open and flat universe?

k 1 i A
= ) -
a2 3 f 3

(p>0&A>0)& k<0 = Impossible

—no need of the explicit solution

* Also closed universe can not-recollapse: it needs to become larger than

k |
= 5— S Hi~A
”’max
. it needs a large enough CC
a(t)

I\ -1 e
* Otherwise, it recollapses in an Hubble time e
K= 41

3 bang now s crunch
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The Initial Patch Problem

—Imagine we start with a small inhomogeneous universe, not dominated by Inflaton
potential. Say it expands in a decelerating way.
- to start inflation, we need to decrease to .
i ¢ d H ¢ [[!

— During this time, many modes become shorten than i OPFRW

—Modes longer than H count as an effective Homogeneous density

—At each time step, PFRW ~ changes by order 1: 5, /o~1 = Spraw/prrw ~ 1

Overdensity

Short-scale overdensit

il e -]
6 (22)
" e k ~ 1 : the curvature jumps by order one T
s
—at each Hubble time. L L

7 bang now s erunch
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The Initial Patch Problem

—Several mechanism to avoid to this problem have been proposed in the years
—Linde likes starting with a Planckian torus

—I like starting out of false vacuum eternal inflation.

* but somehow we continue to talk about this problem

* because they were ad-hoc mechanisms

* The solution we present here is radically different

—we will show that this problem is non-existent (but for a deep, non-trivial, reason)
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Inhomogenous Cosmology

—Already Wald (1983) had shown that if the weak energy condition is preserved, all
homogeneous but inosotropic universe (Bianchi universes) that are not “closed’ (that is

non-Bianchi-Type-IX universes) cannot recollapse.

-WEC: T, tHt" >0 (i.e.“p > 0,p+p > 0"), for any ¢t* timelike

—But inhomogeneities are more challenging.

—diff equations become partial diff, and singularities form, geodesic cross, etc. It is a

much less symmetric situation.

—we will see that a sort of similar conclusion holds

* Let us therefore consider general “cosmologies’.
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A Cosmology

—First Assumption: we consider a cosmology:

— a connected 3+1 dimensional spacetime with a compact Chauchy surface (will

comment later on the non-compact case)

e This implies (Geroch 1970):
—the spacetime is topologically ? x M where M is a 3-manifold

—it can be foliated by a family of topologically identical Chauchy surfaces M/,
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Theo reim with Kleban 1602

—This implies that in a big bang cosmology, there cannot be a big crunch

—strongly suggesting that inflation will eventually start, no matter what are the initial

inhomogeneities and the scale of inflation

There cannot exist a non-singular spacelike
hypersurface with maximum volume: given any time
slice, there 1s another with larger spatial volume.
Furthermore, in an initially expanding universe there
must be at least one expanding region on every
timeslice, and if A > 0 the expansion rate in that region
18 bounded from below by that of de Sitter spacetime wn

the flat slicing.

For the first sentence, see also
Barrow and Tippler 1985
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Introduction

—Inflation is believed to have problems to start.
—This talk will argue (prove) that one of the reasons of concerns is not sustained
—it will do so by using some interesting mathematics,

* used to answer a very very physical question
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Proof

—The proof is very simple. A regular surface of maximum volume has extrinsic curvature

K =0 everywhere

—To satisfy Einstein equations, this implies

R® >0 everywhere

—But topologically some manifolds require

R®) <0 at least at one point

—Therefore regular maximal surfaces cannot exist
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Hypothesis

—A cosmology

—The spatial topology of My must not be “closed’, i.e. it must not be of type (i) that we

define below (roughly, AJ; must not be a sphere)

—~The weak energy condition holds (satisfied by matter, radiation and V>0)
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Notation

w (Y is the orthonormal vector to  }/f, : na = 1

— Spatial metric h’HV = Guv -+ TNy

— Extrinsic curvature K, = h,"V n, K=vV,n"
—how much the family of geodesics induced by 77, deviates
; 1
fub artlo o) o - 1 ra r e
In particular  f — V., gL = e qf& Ay

—Notice £, log ﬁ — JK, :rate of growth of volume

= Vh ~ \/ h() ('fh/ ;
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Proof
—Similarly to FRW case, consider (cc reabsorbed in stress tensor)
n'n"G,, = 8nG N T, n*n”

—From Gauss-Codazzi

_ 1 ¢ o 2 b . o
nn'G,, = 5 {11’,(") -+ (1& f’f) - K, K" } = 3 — surface quantities
— —> we have 9
16nGNT,,nFn” = RS L ZK*_ o jad

—If a surface has extremal volume, the volume is stationary wrt any variations. Since

Lo log Vh = K, = K =0 everywhere

—Then we have, on an extremal surface

167TGN Y_}L]}TL/L'T}/’/ — R(d) ey 0/1’120-’.!”/
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Proof
—One Einstein eq. is . (3) -
16nGy Tun#n’ = R —o"0y,

. W
>0 by WEC <0

-If RB) < at least at one point » = this equation cannot be satisfied

— —>an extremal surface cannot exist

—It turns out that for order-one fraction of topologies () < (0 at least at one point

— —>an extremal surface cannot exist

—This means that in a spacetime with this topology, and with a big-bang or big-crunch,
given a surface, we can always find a surface with larger volume (either in the future or
in the past)

—This surface can be found with the following procedure
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Mean Curvature Flow

—Take a surface, and deform it forward or backward according to sign of /

\ [kl
WM

K
/

> ()

~

oV e e
~The change of volume: Gy = / dzK*Vh=(K?) >0

—So this procedure either converges to an extremal surface, if it can exists,

K =0 everywhere
—or it gives a surface of larger volume indefinitely
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Thorston Classification Conjecture

Thorston, Hamilton, Perelman
—To determine which manifolds must have R < 0 at least at one point ,
consider that all compact oriented 3-manifold fall into one of these three classes

—(i) “"Closed”: any function on }\f, canbe the R of a smooth metric on )/,

‘ext 8% §%2x St 8%/T(with ' € SO(4)), RP3

—(ii) “*Flat”: any function on M} can be the of a smooth metric on if it 1s

negative somewhere or zero everywhere

* ex: R3/T'( with I an isometryof R?)

—(iii) **Open”’: any function on )/, can be the R of a smooth metric on A/, if it

is negative somewhere
eex: H°/T, H* x R,nil,sol, SL(2, R)

—Any connected sum of (1) and (ii) with a factor of (iii) is of kind (ii1)
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Thorston Classification Conjecture Classification
Thorston, Hamilton, Perelman
—To determine which manifolds must have R(3) < 0 at least at one point ,
consider that all compact oriented 3-manifold fall into one of these three classes

—(i) “"Closed”: any function on }\f, canbe the %) of a smooth metric on )/,

eX: 89 S§°x 8, 8°/T(with T € SO(4)), RP®

—(ii) “*Flat”: any function on M} can be the of a smooth metric on if it 1s

negative somewhere or zero everywhere

*ex: R3/T'( with I an isometryof R?)

—(iii) **Open”’: any function on )/, can be the R of a smooth metric on A/, if it

is negative somewhere
eex: H°/T, H* x R,nil, sol, SL(2, R)

—Any connected sum of (1) and (ii) with a factor of (iii) is of kind (ii1)
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Thorston Classification Conjecture

Thorston, Hamilton, Perelman
—The set of topologies in countable! Can be represented by an integer number (~FRW).
—For type (iii), the theorem is established.
—For type (ii), it could be that R("i) — () ()V()rywh()r()
—1f extremal surface exists, we have:

= 0, =0, T, =0 (with dominant energy condition)

DEC : T),t" is past directed for all future directed timelike ¢t*, “p > p”

—empty universe
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Open universes

—In all cases where R 2(3) < (0 at least at one point , at that point we have
(3) 2 2 v
l()'}TGNTWn n' =RY 4+ =K*—0,,0

3
|K| > K, = \/247TGNTZ},,,/NJ"TL”.

—If we add that the universe is initially expanding, than we have that at that point

€ B e
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Open universes
K| > K, = \/24nGNTntn>.

—We have at one point on any surface

—the universe is initial expansing

—_— K 2 K* at that point

—Assume there is a surface where [ < K * everywhere

—can pull back the surface to obtain a surface where || < K, everywhere

 contradiction

* Therefore, in any slice there must be a point that

* expands with 1€ > K*

—Suppose now there is a positive CC

. . . » ; > /
—(as in inflation), then K > \/Zfl_'erNA = Ky,

—a region expands always faster than in inflation
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Subtleties

—We need to assume the absence of finite volume singularities
—the universe could stop expanding all of a sudden

—these singularities are conjectured to be removed with some mild assumptions of
regularity of stress tensor (Barrow and Tippler 1985)

—these singularities sound quite unphysical to us
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Does the universe reach infinite volume?
—It is tempting to conclude that the slices obtained with mean curvature flow reach
infinite volume
—But it could be that the overall volume keeps

— growing reaching an asymptote

—This is very unlikely:
—there is always a region that expands fast
—therefore this region should shrink, becoming singular

— this can only happen if surface reaches embedding infinite time

» which it must as otherwise it would reach extremality

—Then, unless the surface is null, it has infinite volume T

—(this is not proven yet: we are trying to prove this)
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Implications for inflation
—Modulo these concerns, these surfaces will reach

—infinite volume, so that the vacuum energy will dominate

—The probability to start inflation is therefore reduced to estimating the probability for
these topologies (clearly order one), as well as for the inflaton of being on top of the

potential (see later, but I will not make a judgement on this)

—~The problem of initial homogeneity seems to have been resolved (but showing it does
not hold for topological reasons)
—the random walk of 0 P / £ did not hold because topology induced a correlation

among modes.
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More ° prac‘[ica] > considerations  with East, Linde and Kleban 1511

—This is as far as pure Mathematics has brought us.
* There is a strong suggestion that inflation will always start for these topologies.

* We can check this by performing numerical simulations (actually historically we have

done in reverse order)
* Approach: start with highly inhomogenous universe, and simulate its evolution.
—need a code that can handle singularities, batch holes and horizons.

—Solution: as illiam East! and the problem is solved.
Solut k Will East! and tl bl lved
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Strategy of stmulations with East, Linde and Kleban 1511

—Consider an initially expanding highly inhomogenous universe.
—Define a local hubble rate by the extrinsic curvature: [,

—There will be modes longer and shorter than  F

Overdensity

Short-scale overdensit
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Stra‘[egy of stmulations with East, Linde and Kleban 1511
* The effect of long modes L / H < 1 canbe understood analytically.

—As long as a mode in longer than Hubble, its effect is simply to renormalize the
energy density: it induces a local homogenous anisotropic (Bianchi) universe

—~Their evolution is well understood (Wald 1983): only closed universes can
recollapse

—If a universe is open on average (meaning that the zero mode of the energy 1s such
that it makes is open-Bianchi), there must be a region where the effect of long

modes 1s to keep it open at all times /.,_

¢ / (p — M H?) <0
JV

Tty
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Stra‘[egy of stmulations with East, Linde and Kleban 1511
* The effect of long modes L / H < 1 canbe understood analytically.

—As long as a mode in longer than Hubble, its effect is simply to renormalize the
energy density: it induces a local homogenous anisotropic (Bianchi) universe

—Their evolution is well understood (Wald 1983): only closed universes can
recollapse

—If a universe is open on average (meaning that the zero mode of the energy 1s such

that it makes is open-Bianchi), there must be a region where the effect of long

modes 1s to keep it open at all times /.-_

. / (p— MEH?) <0
JV

Tty
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Strategy of stmulations with East, Linde and Kleban 1511
* The effect of short modes [ / H > 1 have strong dynamical effect
~J

e they will form overdensity that end in Black Holes
* but, by conservation of energy, empty regions will form, and in those locations
inflation will start

* We start with simulation with domination of gradient energy:

¢(t = 0,x) = ¢ + 6¢p > cos(k-x+6k)|,
1<|kL/27|2<N
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Simulation

—Inflation starts

—BH emit GW

-30 =10 -2 -1 153 10 30 10° 10! 10° 107
H/Hy P/ P
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Approaching Inflation

10° e ez
. k/]'][) :1 LYt il k/]_]” :8
o == KH=2  k/Hy=4x
5 cio k/H, =4 (112,...,512)
i,
~> 10° |
100 ‘ , : ) N —
10° 10!
— k/Hy=1 = k/H,=8
== k/Hy=2 k/Hy =4 x
5‘ 10! S (4 L)
sy
a~
S
100 """""""""""" Ty
10° 10*

—Universe on average expands like radiation and then as CC
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Approaching Inflation

1

- Vol. avg. |

—
.

-

e e = oam w oa

.......................
[
.......

...............

== max e min - Vol. avg.

] "8 I |

0.5 1.0 1.5 2.0
tH,

—BH form but dilute, universe homogenizes, inflation starts
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Slight Issue for Inflation
—It looks like there 18 no need to impose with initial homogeneity to have inflation

somewhere.

—just estimate probability of topology (or of zero mode)

* But we require the field to be on top of the potential.

~Why?
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Slight Issue for Inflation

—Consider an inflaton potential with a very perturbed initial field configuration.

V(e) 0¢
—
Po

Pend

—The fluctuations can be very large, going beyond the plateau

Pirsa: 16060010 Page 37/40



Slight Issue for Inflation

—The dynamics of the average field is given b .
¢ dynamics O the aver 12C 11C1d 1S given DY &Qa) ()(/)
—the average of the eq. of motion Vo f—
A
(V'(6)) > V'((#)) /
Po .

Pend
—From an EFT point of view: integrate out the fast moving classical fluctuations to keep
only the homogeneous mode. Since the classical fluctuations probe the high gradient

region, the effective potential for the zero mode looks more something like this:
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Slight Issue for Inflation

—The dynamics of the average field is given by

—the average of the eq. of motion

(V'(¢)) > V'({(¢))

P
Pend
—From an EFT point of view: integrate out the fast moving classical fluctuations to keep

only the homogeneous mode. Since the classical fluctuations probe the high gradient
region, the effective potential for the zero mode looks more something like this:

—a non-inflating potential: in fact, we find no inflation in simulations

—In particular: <V’((/))> o ug(/%ﬁ = (%) (%@) > V’(((/)))

unless () > Mp/\/e

* Disclaimer: this is different than the former homogeneity problem

 and quantitatively is highly model dependent
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Conclusions
—It is widely believed that in order to start inflation, we need an homogenous patch of
order H ;
—By using numerical GR simulations that are able to handle singularities and horizons
—& less-usual mathematical techniques such as mean curvature flow and topology
—we have shown that this does not seem to be necessary:
—even by starting with an highly inhomogeneous universe,
—1f we condition on the topology of the manifold (or on the zero mode of the
fluctuations)
—there will be a (potentially small region in terms of initial coordinates) region were
inflation will start with certainty.
* Both the numerical approach and the analytical approach are relatively new and
unfamiliar. It looks like we just scratched the surface of a new attack to the study of the

initial conditions of the universe.
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