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Abstract: Why was the early universe classical? Along with the big bang singularity problem and the flatness, horizon and inhomogeneity puzzles,
this is one of the big unexplained features of the hot big bang scenario. In this talk | will discuss how inflation and ekpyrosis, which have mainly
been considered as models that can address some of the other puzzles, can both drive the early universe towards classicality. The remarkable aspect
isthat classicality is achieved viathe intrinsic dynamics of inflation and ekpyrosis, without invoking decoherence.
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Why was the early universe classical?

« Along with singularity, flatness, horizon,
inhomogeneity puzzles, one of the big
unexplained features of hot big bang
cosmology

* Two aspects:

— Quantum-to-classical transition of perturbations
(fairly well understood)

— Quantum-to-classical transition of background
(main interest in this talk)
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Background classicality

« Usual explanation:

Interactions between Eerturbations and
background decohere the background  (zen ‘86, Kiefer 87...]

« Reasons not to be fully satisfied with this:

— Decoherence happens in classical time, while we
want to understand why time is classical in the first

place (Butterfield & Isham ‘98]

— Imagine a beginning: there might not be a
background/perturbations split, i.e. no perturbations
might have been produced yet

« Here discuss how classicality can be achieved via
the “intrinsic dynamics”

[Hartle, Hertog & Hawking ‘08, Battarra & JLL ‘15,
Bramberger, Farnsworth & JLL, in preparation]
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Quantum Mechanics

* Path Integral formulation

In guantum mechanics, we (a1t2)
are used to calculating

transition amplitudes

between two events -

according to Feynman'’s

prescription we must sum

over all interpolating paths:  x.t)
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Quantum cosmology

« Semi-classically we can generalize the
path integral:

' (by %))
/DangeSL’ a,¢)
o= S5 cxt (b,X)
(by, %) 4

Here the action

describes gravity Sg = 2m? (17’ —3aa’” — 3a + a® —(/)’z + V
plus a scalar field: ,

(b, x)

22

Pirsa: 16060009 Page 6/28



Quantum cosmology

« Semi-classically we can generalize the
path integral:

(by %)
(b, x)} = / DaDepe 55 (@)
~ @_'?Emm(bax)
/ (by, %)

Saddle point of the action, generally @
complex-valued solution of the classical
equations of motion
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WKB

« How do we tell whether the wavefunction describes a
classical universe?

/\ /\\\ W oo,
bR
E<V E>V

Source:

wikimedia commons

w

A

|
Oscillating: Decaying:

phase changes fast amplitude changes fast

« WKB criterion: a(mnplitllde) asR

) 1
J = ¢~ OE J(phase) 851 b
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WKB

« Note that the WKB conditions concern
the evolution of the transition amplitude
as the final hypersurface is varied

P(b,y,) W(by,,) Wby, byt [b(L), (M)

(spy

(s,

» Denote final value of scale factor a by b
« Denote final value of scalar ¢ by ¥
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Models

« Consider gravity plus a minimally coupled
scalar field with potential

= ‘:VUG_\/Z(/)

e = constant

* Then, for a positive potential and € < 1
we obtain inflation

* For a negative potential and € > 3
we obtain ekpyrosis
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Asymptotic solutions

A constant equation of state is obtained
with the potentials 1/ = ::V()@—\/Efb

* Then there exist the asymptotic scaling
solutions (which are attractors) for both
inflation and ekpyrosis:

a = (L(J|/\|'l/('a ¢ = _\/;hl ( ‘Z_(jc M’) r e 62)\;

« Time ranges: inflation ekpyrosis

0< A< -0 < AL(
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« The asymptotic solution immediately allows us to determine
the asymptotic behaviour of the imaginary part of the
Euclidean action (i.e. the real part of the ordinary action)

St~ i /d)\a3V

~iay ()\)_H‘S/E
G g Lisisnd
N’L(LSVQ 2€

~ bV (x)?

« But how do we find SR ?
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« The asymptotic solution immediately allows us to determine
the asymptotic behaviour of the imaginary part of the
Euclidean action (i.e. the real part of the ordinary action)

St~ /d)\a3V

~iay (/\)_H‘S/E
e Linds
N’L(LSVQ 2€¢

~ 0¥V (x)'/?

« But how do we find SR ?
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Symmetry of the action

 The action
H: o ]

S]j) — / d4flj\/§ (5 i 5'(-}[.1411(5)“(/) 07/(/) i (3~r:(/))
has a classical shift/scaling symmetry

G — CA}=
o —{olng /ANORS L1l — () ‘/)g,_,,y

, ‘ o e
SFJ S (-_'i(‘A(/) / (JZ/I.’I»"\/.(._? (5 . 5.6”1/0/1,(/)(‘);,(/) - (i—(x/))
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Under the symmetry, the scaling solutions

_ 2 | €2 o
(;L:(jL(}’/\’l/C? (/):—\/jlll ( ;: ‘/U /\) V = 2/\;
€ . €

are transformed such that

i e —1cAd & 3—¢€ |
a=ao(\)e, ap = (zxp( p 5 /> ao , V(p) = R o

: (2 |/2(
It is clear that ay=a [ - V) serves as a label to

e . . J—€
distinguish solutions

The scaling of the action then implies
2:

o : a0
Sp = (a(‘A‘/’Sﬁ‘ — (——) S

a0

2€

_> SE OC CL((_

1
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Asymptotic solutions

« Using these we can find the asymptotic dependence of the

action upon varying the end points along a classical history:
2¢ 2e

SE 0T~ bV ()Y

Sh ~ib® V(x)?
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Asymptotic solutions

« Using these we can find the asymptotic dependence of the
action upon varying the end points along a classical history:

2€ ‘
S ~aj " ~ bV ()
SL ~ i3V (x)/?

* This leads to the WKB expressions  (with N = In |aH|)

OxSE % ba-TV (x)/ (71 ~ BE3 o (€3N (e=1)
05 b3V (x)1/? |

OpSE
(‘)bS[-{;

~ )\5_(_4 ~ b(;_:'3 ~J ()_((_:;)N/((_l)
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Numerical verification

« We can verify these simple scaling laws
numerically, for instance by starting the

universe in the no-boundary quantum
state
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The No-Boundary Proposal

‘ (b, x)
/ DaDee—S8(@:9) N
JC

~ G—SE,(-zzr:l,(b9X) x
~ compa

(b, x)

« The wavefunction is given by a path integral over all
possible four-geometries that are compact in the past
(i.e. the possible paths are restricted)

« Hartle-Hawking b.c.: the universe is finite and self-
contained

« Saddle point approximation: the geometries that are an
extremum of the action with the required boundary
conditions are typically complex

[Hartle & Hawking]
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Hawking'’s Prototype Instanton: Pure dS

« Here there is no scalar field, only a pure de Sitter
space with cosmological constant A = 3 H?

* Probability
: 24 72
G—2R6(S) — e 12
T plane
A
-
a = sin(— + &t
(% +it
= cosht
a = sin(7)
>
0 /2
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Example of Inflationary Instanton

W ———r—r——————————— Wr——————r——+—+———+—+——+—m

« This isi the o, |k o
complex
generalisation
of Hawking'’s 10
pure de Sitter
Instanton

dark = real a " dark =real ¢

» Classicality is
reached alonga * | 2 0 S e o M
coincident
vertical line of
real field values

[Hartle, Hertog & Hawking; JLL)
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WKB Classicality - Ekpyrosis

* In this case also, the wavefunction becomes increasingly
classical in a WKB sense

a R /a9 ol - ¢ R /¢ ~ [ -
0.100
0.100
0.050 10y SE/0y S|
0.050 |06 Se/0ySE|
0.010
0.010 ~e (e=3) Ni(e=1)
0.005
0.005 l\
N N
..................... 0‘001 L " " i - " - L - - - i " " " L - - " i
/

B e—N [Battarra & JLL]
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Ekpyrotic instantons — with a bounce

Extend the theory to include
a ghost condensate after
the ekpyrotic phase

S = / N [g + P(X,(/))]

P(X,¢) = k(p)X + a(¢)X?* = V()

Classical solution:
(time runs from right to left)

100
80

...................................

ekpyrotic

kinetic contraction
-expansion

bounce

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

* Now try to evaluate the wavefunction W(b, %) with
arguments evolving along this classical solution
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Ekpyrotic instantons — with a bounce

« Here is a typical instanton shape: (“time” from left to

right)
200F !
! ; 4t
150¢ sl Re(®)
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\ s J
|
Long complex phase Ekpyrotic phase & bounce

[JLL)
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WKB Classicality of the Wavefunction

("“time" from right to left)

1 1| |8SE/BySE
0.50
0.100
|6;,SEI8;,S§;I ~(€-3) NI(e-1)
0.10 ~o(€-3) Ni(e-1 0.010] o AU
0.0 0.001
' 104
0.01 . . L ‘ . Ly | . | . . J X
iy B R R W R R e o FTE Y R .y Y

 After the bounce the universe is even slightly more
classical than before

[JLL)
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WKB Scaling

WKB x e~ =1

x af 3

* Implications depend on what is varied and
what is held fixed:

— For a fixed number of e-folds, prefers a strong
ekpyrotic phase and a weak inflationary phase

— For a fixed amount of expansion/contraction,
prefers strong inflationary and strong ekpyrotic
phases
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Summary

* Smoothness is achieved in proportion to

1 i e“2N
afhe

aslongas €<l or €>3

« Classicality is achieved as the WKB factor
becomes small
_e=3 )

e e—1

which again requires e < 1 or € >3
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Open questions, .

* Are there any other ways of obtalnlng |
smoothness or classicality? -

e Can there eX|st mterferences between the
dlffeynt branches/umve'rses before
herence sets |n’?

,‘i
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