Title: A few algebraic surprises in Anti-de Sitter space
Date: Jun 02, 2016 01:00 PM
URL: http://pirsa.org/16060000
Abstract: < $p>$ Questions of nonlinear stability in global AdS space have recently received a significant amount of attention, both as an interesting problem in mathematical general relativity and nonlinear dynamics, and in relation to thermalization studies within the AdS/CFT paradigm. Working with nonlinear perturbation theory (the main technique available for analytic studies in this area) requires a thorough understanding of the properties of linearized AdS fields'</p>
< $\mathrm{p}>$ mode functions, which are the fundamental building blocks in perturbative treatments of nonlinearities. While complicated explicit expressions for these mode functions are available in the literature, they hide a good deal of the elegant underlying structure dictated by the AdS symmetries. Extending the mode functions in the flat embedding space (in which the AdS space can be realized as a hyperboloid) results in families of homogeneous polynomials, on which the AdS isometries act in a straightforward manner. This suggests a simple proof of important selection rules in nonlinear perturbation theory.</p>
< $\mathrm{p}>$ Studies of multiplet structures of the mode functions furthermore reveal a relation to the Higgs oscillator, a well-known quantum-mechanical superintegrable system. This AdS connection leads to an explicit construction of the hidden symmetry generators for the Higgs oscillator, a long-standing problem in mathematical quantum mechanics.</p>

$$
\begin{aligned}
& \omega_{\text {men }}= \pm \omega_{n, l_{1, n}} \pm \omega_{n_{2} l_{2, n}} \pm \omega_{n_{1, t}, n_{3}}
\end{aligned}
$$

$$
D P M L
$$

$$
\begin{aligned}
& Y_{R_{m}} \\
& x x^{\prime}=1 \\
& \text {) } \Delta P_{l}\left(x^{\prime}\right)=0 \\
& L_{I J}=i\left(\eta_{I N} x^{k} \frac{\partial}{\partial x^{2}}-\eta_{J x^{\prime}} x^{k} \frac{\partial}{\partial x^{\Sigma}}\right) \quad e_{n l n}\left(x_{x} \Omega\right) e^{i \omega n+t} \\
& L_{ \pm_{i}}=L_{x_{i}} \pm i L_{y_{1}} \\
& \text { SO(} 0,2 \text {) } \\
& \square_{\text {flat }} \frac{P_{N}\left(X^{2}+Y^{2}, X^{\prime}\right)}{(X-Y)^{d+N}}=0 \\
& 2 n+l=N
\end{aligned}
$$

$$
\omega_{1}=\omega_{2}+\omega_{3}+\omega_{1}
$$

$e^{-i \omega_{1} t} e^{i \omega_{2} t}$
$l_{1} l_{2} l_{3} l_{4}$ $\psi_{1}^{*} \psi_{2} \psi_{3} \psi_{4}$
$\cot \theta \quad \frac{1}{\cos ^{2} \theta}$

$$
L_{-}(f g)=\left(L_{-} f\right) g+-\left(L_{-} g\right)
$$

