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Abstract: <p>In thistalk | will: 1) review the results of my work on a geometric approach to foundations for a postquantum information theory; 2)
discuss how it is related to other foundational approaches, including some resource theories of knowledge and quantum histories; 3) present some of
my research on a category theoretic framework for a multi-agent information relativity. More details on part 1: this approach does not rely on
probability theory, spectral theory, or Hilbert spaces. Normalisation of states, convexity, and tensor products are alowed but not assumed
foundationally. Nonlinear generalisation of quantum kinematics and dynamics is constructed using geometric structures (quantum relative entropies
and Banach Lie--Poisson structure) over the sets of quantum states on W*-algebras. In particular, unitary evolution is generalised to nonlinear
hamiltonian flows, while Lueders rules are generalised to constrained relative entropy maximisations. Combined together, they provide a
framework for causa inference that is a generalisation and replacement for completely positive maps, with information dynamics determined
directly by epistemic constraints, and no requirement for lack of correlation. Orthodox probability theory and quantum mechanics are special cases
of this framework. | will also give the progress report on the reconstruction conjecture: given the category of sets of abstract "states" equipped with
the suitably defined entropic distances and BLP structure, how one reconstructs the W* -algebraic case? The discussion of the consistent operational
semantics for this approach will lead us to the parts 2 and 3.</p>
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Plan

1. Nonlinear generalisations of quantum dynamics:

» Geometric structures on quantum state spaces — relative entropies & Poisson brackets
» Liiders' rules — constrained relative entropy maximisations
» Unitary evolution — nonlinear hamiltonian flows

N

. Geometric (post)quantum information foundations:

» Mathematical and physical principles
» Global and local dynamics
» Global and local reconstruction of QM

w

. Category-theoretic operational semantics:

» Adjointness in foundations, functorial localisation
» Resource theories a la LAR-LK-RR
» Beyond adjointness: local monad-comonad systems

§N

. Towards [(post)quantum] local information relativity:

» From equlibrium to nonequilibrium space-time thermodynamics
» Two-dimensional surfaces (0, o) and geometry in Klauder-Daubechies quantisation
» Quantum dynamics of (@, o)-spaces
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trace class operators: T(H) :={p € B(H) | p > 0, try|p| < o}

we will consider arbitrary sets of denormalised quantum states: M(H) C T(H)"

Quantum information distances D : M(H) x M(H) — [0,00]s.t. D(p,0 0

D1(p. o) tray (p log og o) [Umegaki'62]

»>

>

for ran(p) C ran(eo), and with all D(p, o) := 400 otherwise.
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Quantum entropic projections

Let @ C T(H)™ be such that
for each 1) € M(H)
there exists a unique solution

PR i= arginf,oq {D( )}

It will be called an entropic projection,

E.g.

o for Dy a(p, o) = 2| /5 - \/’7“:;1
consider the entropic projections ‘l‘zm

where Q are images of closed convex subspaces § C K* := Ba(H)*
under the mapping @3 /i~ p € Q.

They coincide with the ordinary projection operators in B(K) = B(H @ H*),
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Quantum bayesian inference from quantum entropic projections
e RPK'13'14, F.Hellmann—-W.Kaminski-RPK'14:

rginf {D1(p. o)

Q={oc¢€ T(H)™" | [Pi, o] = 0Vi}

e derived from

»arg inf {D1(p. o)

with

Q={ceT(H)" |[Pi,o] =0, try(cP;) = pj Vi}
under the limit p2

© hence, weak and strong Liiders’ rules are special cases of quantum entropic projection ‘138"
based on relative entropy Do(e, p) = Di(p, o).

3ayes—Laplace and Liiders' conditionings are special cases of entropic projections
“quantum bayesianism C quantum relative entropism’.

Meaning: the rule of maximisation of relative entropy (entropic projection on the

subspace of constraints) can be considered as a nonlinear generalisation of the dynamics
describing “quantum measurement”. [RPK'10'11]
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Nonlinear quantum hamil}:onian dynamics

For each hamiltonian vector field, the corresponding Hamilton equation is equivalent to the Béna
equation ['91'00]

$ep(e) = [dh(p(t)), plt))-

Hence,

The Poisson structure {-,-} induc@l by a commutater of B({) allows to introduce various
nonlinear hamiltonian evolutions on spaces M(H) of quantum states, generated by arbitrary
real-valued smooth functions on M(H).

The solutions of Béna equation are state-dependent unitary operators U(p, t).
They do not form a group, but satisfy a cocycle relationship:

Ulp, t+ 5) = U((Ad(U(p, £)))(p), 5)Ulp,t) YRs &

In a special case, when h(p) = try(pH) for H € B(H)™,
the Béna equation turns to the von Neumann equation:

10(8) = [H, p(0).
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Quantum causal inferencés by entropic-hamiltonian dynamics
@ Two elementary geometric structyires:

* D(:+) represents the conventign of “best estimation/inference”

*» {h,-} represents a convention pf causality (“internal dynamics”)
@ Two elementary forms of quantury dynamics:

* entropic projections ‘138 gener,

ted by quantum distances D(:, 1)
* hamiltonian flows w* generat

by nonlinear hamiltonian vector fields {h, -}

A general form of quantum dynamics is defined as a causal inference ‘135 o w,".

@ It generalises unitary evolution followed by a “projective measurement”.,

® Postulate: consider the setting of causal inferences BE o w)

0 O Wy as an alternative to the paradigm of
semigroups of CPTP maps,

o Basic idea: every CPTP instrument [Davies-Lewis'70] can be decomposed into:

(1) tensor product of initial state with uncorrelated environment,
(2) unitary evelution,

(3) projective measurement,
(4) partial trace,

It ramains to prove that (4) and (34-4) are entropic projections,
M.Munk-Nielsen'15; (4) is entropic projection at least for strictly positive
RPK+4-MMN'16: : 4

for all stat

states. Ongoll
tes and (4) for nonfaithful ones.
) ommast
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2. Geometric framework for quantum information
theories be_‘ond quantum mechanics

o Principles of geometric (post)quantum kinematics
o Global/sequential and local/parallel dynamics
e Global and local reconstruction of QM
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2. Geometric framework for quantum information
theories be{ond quantum mechanics

e Principles of geometric (post)quantum kinematics
@ Global/sequential and local/parallel dynamics
¢ Global and local reconstruction of QM
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Towards new foundations|
Key mathematical and conceptual change: ;
A shift from ontology of eigenvalued (implemented by operators on Hilbert spaces and

probabilistic statistics) to epistemoldgy of expectations (implemented by geometry of state spaces
of W*-algebras and quantum statisfics),

Idea:
@ consider spaces M(H) as fundamedqtal

@ allow any nonlinear functions M(H| — & as observables
(smooth determine hamiltonian fungtions, affine determine self-adjoint operators)

® define geometry of M(*H) by means of D(-,-) and {:, .}

@ define dynamics of M(H) by means of '133(.. ) and Wr[h"}
Questions:
@ what's up with Hilbert spaces?

® what's up with spectral theory, probability, Born rule, etc?
Answers:

@ replace Hilbert spaces H by W=-algebras A’

° Jr:rplaa sets M(?H) of density matrices on M. by sets M(N) of positive integrals on W=.algebras

o this setting is an exact
theory

generalisation of Kolmogorov's measure theoretic setting for probabili
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probabilistic statistics) to epistemoligy of expectations (implemented by geometry of state spaces
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@ consider spaces M(H) as fundamedtal

@ allow any nonlinear functions M(H|) — & as observables
(smooth determine hamiltonian fungtions, affine determine self-adjoint operators)
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N
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W*-algebras and integratjon

o A W*™-algebra \;

* an algebra over C with unit I,

with = operation s.t, (xy)" =

PR, (e y)® = X" S y®, (x™)" =X, (Ax)" = A"x",
that is also a Banach space,

>
>

* with -, +, * continuous in the Zorm topology (implied by the condition |x* x| = Ix1?),
such that there exists a Banach space \V, satisfying Banach duality: (M) =N,
@ Special cases:

>

*» if V' is commutative then 3 a measure space (X, p) sit. N°™* 22 Lo (X, )™ and
Ne 2L (X, p)

» if Vs "type | factor” then 3 a Hilbert space H s.t. N 2 B(H) and N} = T(H)™

® Hence, the element ¢ & (N, )*

provides a joint generalisation of probability density and
of density operator, By mea

of embedding of NV, into A'*, it is also an integral on A/

® We chose M(N') C N as our g " quantum state spaces,

o

Ryssartl ol Wostmehi (Parinveter |netitute)
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Noncommutative integration on W*-algebras

e Commutative integration;
spatial representation

algebraic formulation

|

underlying obfect localisably: measure space: [V, O[], 1)
Lp-spaces *‘ Lp(, U(X), 1)

states q € M(XTU(X), p) © La(X, U(X), u)*
expectations of observables Loo(X, U(X), ) B F =+ [y paf € R

@ Noncommutative integration:

underlying object t(Ho ey
L p-spaces By (H) = L (B(H), tr)
states P& M(H) S Ou(H)" & B(H)T
expactations of observables BIH) = B o6 (H) B x = tr(px) G C

localisable boolean algebra: A
Lp(A)
@ & M(A) C Ly(A)*
dElc(A)BF—e(f)eR

algebraic formulation

W algebra: N
Lp(N)
® & MIN) € Li(N)* & A
NwloyN)pxmpx)eC
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Orthodox quantum mechanical pdradigm (von Neumann, 1926-1932):

mA H=H

specral
pamdigm sample speces
rodel censtruction e g |

{0.0. quantisation) modals s o

statistical estimaton
and inference

@ a solution of a particular problem (solid mathematical framework providing unifying foundations
for ‘wave mechanics' and ‘matrix mechanics')

@ von Neumann'1935; "l would like to make a confession which may seem immoral: | do not
believe absolutely in Hilbert space anymore.”

Some key observations;
® Probability theory is just a special case of integration theory on W*-algebras,

@ From the perspective of this theory, quantum states are just inte

grals, so there is no a priori
reason why “general” quantum theory (beyond QM) should depe

nd on probabilities
@ Quantum states (and structures over them) can be associated direct!

! y with the epistemic data |

generalising the methods of associating epistemic data with probabilities (and with structures
er them

Hymaard Dol Woutmehi
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Smooth quantum informdtion geometries

\Under some conditions, D induces 4 generalisation of smooth riemannian geometry on M(N). |

© M(H) := {p(0) € T(H) | p(6) > 0|0 € ©® CR" open, ~+ p(f) smooth} is a C-manifold

@ Jencova'05: a general construction f smooth manifold structure on the space of all strictly
positive states over arbitrary W*-aljzebra, with tangent spaces given by noncommutative Orlicz
spaces,

@ Eguchi'83/Ingarden et al'82/Lesnie®ski-Ruskai'09/ Jencova'04;
Every smooth distance D with positive definite hessian determines

a riemannian metric g° and a pair (V2, VP') of torsion-free affine connections:
Bo(u,v) = ~04169y)w D(9, )| me
Bo((Vu)gv,w) i= “aulaavlr:.”wqun('ﬁ.U)|u-.:..
la(V-(vL]ew) 1= =010 w06 D(%, w)|ms)
which satisfy the characteristic equation of the Norden|'37]-Sen['44] geometry,

g2 (u,v) = gD(tfa(u),thf(v)) Yu,v € TM(N),

® A riemannian geometry (M(N), gP) has Levi-Civita connection © (VP 4 pot )/2.
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Hessian geometries = dudlly flat Norden-Sen geometries

If (M, g, V. V") is a Norden-Ser} geometry with flat ¥ and V', then:

D there exists a unique pair of functions & : M — R, &* : M — R such that g is their
hessian metric,

7 ".2 L
gi(p) = u(f(—“)—ﬁo’rada-" lp) = 222 0)

oo
where: {6'} is a coordinate system s.t. Mik(p(0)) =0 Vpe M,
{n'} is a coordinate system s.t. 'Y’ ijk(p(n) =0Ype M.

dn' @ dny,
D006 n @dir

P the Eguchi equations applied to the Bragman distance
De(p,) = 0(p) + () - 3 0/(p)1 ()
i

yield (g, V, V") above.

Fysuansl Dol Wontmchi (Parimater Irtitutm)
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Smooth generalised pythagorean theorem

Let (M, g, V,V") be a hessian geometry. Then for any Q C M which is:

o V' autoparallel := Viv € TQ Yu,v € TQ;

o V'i-convex := Vp;,p2 € Q 3! V'-geodesics in Q

connecting p1 and pa; /
there exists a unique projection
M 3 p s B2 (p) := arginf {Ds(0, p)} € Q.
- oeQ
\ v
e it is equal to a unique projection of p onto Q along a \

V-geodesic that is g-orthogonal at Q.

e it satisfies a generalised pythagorean equation

Do (w, B (p))+De (P3¢ (), p) = Do(w,p) ¥(w,p) € QxM.

Hence, for Brégman distances D+ the local entropic projections are equivalent with
geodesic projections.
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Local effective dynamics

One can combine locally the entropic projections with hamiltonian flows, by passing to
the derived geodesic projections, and combining both in a single formula for effective
dynamics.

Given a hamiltonian observable h and a relative entropy D, the 1-form dh(¢) — don ()
represents a local perturbation of causal dynamics by the information flow along entropic
geodesics.

In particular, Dy /2 = 2||\/_ \/_|| gives Wigner-Yanase metric g'/?, with
dg1/2(p,0) = 2arccos(t1 1 (/PV0O) T The free fall along the geodesics of Levi-Civita
connection V!/? encodes the continuous process of projective measurement.

The resulting effective dynamics can be given mathematically exact form in terms of a
continuous-time regularised path-integral

‘ i [, dt Qr‘.‘[ d_ g /2 (0(t)2,
|im0 / 'D("i(-)(‘ < t)Vol/2 (”>H.;,(:)_ (1)
=i Jy 4t(Que) ma(e) ([dh(@(0)Qp(e)) o — § [, dtaly (@(0)6%6F (2)
If evaluated only on boundary pure states, and for h(¢) = &(H), it is known

(Daubechies-Klauder'85, Anastopoulos-Savvidou’03) to be equal to
(Q(t =s),e7"Q(t =0)),,
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Backwards compatibility: Global reconstructions

la. (Global) Reconstruction of quantum
mechanics:

A

»
>
»>
»>

N type | W™-algebras

M(N): normalised states

D: D,/ or Do

{-,-}: generated by Banach Lie algebra N/5@
observables: linear functions on M(N)

2. Reconstruction of probability theory:

N': commutative algebras

M(N): normalised states

D: arbitrary (but for D; or Dg, and specific
types of constraints, Bayes' and Jeffrey's
rules are recovered)

{-,-}: trivialises for commutative algebras

observables: arbitrary or affine functions on
M(N)

linear W*
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Backwards compatibility: [Local reconstruction of [W*-]QM

localc kinematics (only in tangent space):

> states: vectors of T, M(N) (donfigurations: () — 6 —
> effects: vectors of TS M(N) (pbservables: f — df (¢))

2

o

local dynamics (only in tangent {space):
* causality: hamiltonian causalit®is local

* inference: arbitrary entropic projections are nonlocal, but the Norden-Sen geometries
derived from relative entropies allow to localise entropic projections

* causality+inference: as presented few slides ago

reconstruction of W"-algebras: Can we start from arbitrary sets M, equipped with

geometric structures {-,-} and D(-,-), without knowing that they are over W*-algebras,
and reconstruct M = M(N) from some conditions? — work in progress|

Basic idea of a proof: W™ -algebras = LIBW"-algebras = BLP submanifolds extendible
to convex hull, with observables having Jordan structure = BLP submanifolds (

=Poisson
spaces) M with riemannian structure induced from relative entropy and Kihler
compatibility condition on the convex hull of M «

main conjecture

FHysuuesl Pwwel Komtmchi (Prrimveter Irmtitustm)
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Backwards compatibility: |Local reconstruction of [W*-]QM

localc kinematics (only in tangent space):

> states: vectors of T, M(N) (donfigurations: ¢(8) — 6 — %
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reconstruction of W~ -algebras: Can we start from arbitrary sets M, equipped with
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and reconstruct M = M(\) from some conditions? — work in progress|

Basic idea of a proof: W"-algebras = LIBW"-algebras = BLP submanifolds extendible
to convex hull, with observables having Jordan structure = BLP
spaces) M with riemannian structure induced from relative en

submanifolds (=Poisson
compatibility condition on the convex hull of M «

tropy and Kihler
main conjecture
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Backwards compatibility: |Local reconstruction of [W*-]QM

localc kinematics (only in tangent space):
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Plan

Nonlinear generalisations of quantum dynamics:

» Geometric structures on quantum state spaces — relative entropies & Poisson brackets
» Liders' rules — constrained relative entropy maximisations

» Unitary evolution — nonlinear hamiltonian flows

Geometric (post)quantum information foundations:

» Mathematical and physical principles
» Global and local dynamics

» Global and local reconstruction of QM

Category-theoretic operational semantics:

» Adjointness in foundations, functorial localisation
» Resource theories a la LAR-LK-RR

» Beyond adjointness: local monad—comonad systems
Towards [(post)quantum] local information relativity:

» From equlibrium to nonequilibrium space-time thermodynamics
» Two-dimensional surfaces (¢, o) and geometry in Klauder—Daubechies quantisation

» Quantum dynamics of (6, o)-spaces
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What is the predictive content of semantics of probability theory?

Consider:

@ ©: a space of possible configurations

@ ©30=(01,...,0,): average values of n types of experimental configuration variables

@ =: a space of registrations

Example: MaxEnt + entropic projections (or Bayes’ rule) + prediction:

. _ _ _ model construction _ _
configurations & registrations beliefs & updatings

predictive verification

Bi=try (phi) S: B3(0;)h

© {p(0) = e~ =i PN | g c ©})
EI '138?31

A b;=tryy (ph;) D

&) {p="* ;91[5)([,(())) |6 € ©}
) D
:{ 1‘&;;

\ b;=tra (ph;)

& {pl...}

Pirsa: 16050021 Page 24/25



Towards new semantics

J

o There is no need to use linear ex

® One can use other model constri

e This what we should care about
(information encoding), inferency
(information decoding).

ction principles
bectation type constraints

s the relationship between model construction
(information processing), and predictive verifiability

%
=

\

F=ig(fa(0))

-

({p(0) = proc(f,©) | 0 € ), )

D
Pam

—=((1(:}:= ‘1—‘3::](!’(”)] |0 €8} f)

mbD
Yo
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