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Abstract: <p>Entanglement is both a central feature of quantum mechanics and a powerful tool for studying quantum systems. Even empty
spacetime is a highly entangled state, and this entanglement has the potential to explain puzzling thermodynamic properties of black holes. In order
to apply the methods of quantum information theory to problems in gravity we have to confront a more fundamental question: what is a local
subsystem, and what are its physical degrees of freedom? | will show that local subsystemsin gravity come with new physical degrees of freedom
living on the boundary, as well as new physical symmetries. These structures offer us new insight into how spacetime is entangled, and a new
perspective on the problem of quantizing gravity.</p>
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Quantum gravity

Quantum gravity must be consistent with principles of both
quantum mechanics and general relativity.

Entanglement General covariance
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Black holes are thermodynamic systems

Thought experiment: Could we violate the second law
of thermodynamics by throwing entropy down a black hole?

[Bekenstein 1972]

Black holes are thermodynamic systems,
they radiate at the Hawking temperature

[Hawking 1975] Y
p—
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When we throw things in, the black hole grows according to
the first law of black hole thermodynamics:

dE =T dS.
Where E = Mc*.
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Black holes have entropy

From the first law we infer that black holes have
Bekenstein-Hawking entropy

3 x 10%? bits/m?

Usually entropy is the logarithm of phase space volume.

e What is the phase space?

e Why does Sgy scale like area, and not volume?
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Entanglement

The inside of the black hole is
entangled with its radiation.

This would naturally explain the t—
area scaling of the entropy.

[Sorkin; Bombelli, Koul, Lee & Sorkin; Srednicki]

Entanglement plays many roles in theoretical physics:

e A probe of bulk geometry in AdS/CFT. [rRyu & Takayanagi]
e A renormalization-group monotone. [vidal, Latorre, Rico & Kitaev; Casini & Huertal
L A pl’Obe Of Conﬁnement II’\ QCD [Klebanov, Kutasov & Murugan; Lewkowycz]

e An order parameter for topological phases. [Levin & Wen; Kitaev & Preskill]
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Entanglement & local symmetry
In all of these applications one encounters local symmetry.

e AdS/CFT CFT is an SU(N) gauge theory.

e Renormalization What can flow to the standard model?

e Confinement QCD is an SU(3) gauge theory.

e Topological phases Systems with emergent gauge symmetry.

Gravity also has a local symmetry: general covariance.

In theories with local symmetry
the usual rules of entanglement don’t apply.
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A new approach to subsystems

Local symmetries demand a new approach to subsystems.

Surface degrees of freedom
New states on the two-dimensional boundary of a subsystem.

Surface symmetry
A symmetry that determines how states are entangled.

Pirsa: 16050020 Page 7/48



Entanglement

Entanglement is information about a quantum system
that is not reducible to information about its subsystems.
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Entanglement entropy

Lack of information is quantified with entropy.

For quantum states this is
the von Neumann entropy: S(

S(p) = —tr(plogp).
----- B
A pure state has no entropy,

S(I4) () = 0. S(pa) = log(2)

If AB is in a pure state, S(p4s) = S(pp) = S.
S is called the entanglement entropy.

Subsystems can have more entropy than the whole system.

10
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Symmetry determines entanglement

The singlet state |¢) is invariant under rotations.

( M@ - elr)) = ( N0 @I\ = N\ ®N) )

Sl
SI

9B = AT---aB

The reduced density matrices p4 and pp are invariant.

This determines p, and pp, and hence S = log(2).
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Entanglement of the vacuum

States in field theory — even the vacuum — are entangled.
On each lattice site we place

a harmonic oscillator ¢. \/ @
The Hilbert space is a tensor product: '

H= &) H, y

vertices v

vy

The Hamiltonian includes interactions S !
that couple neighbouring oscillators. © o o o o o

The ground state exhibits vacuum fluctuations
that are correlated between regions A and B.
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Entanglement scaling

Vacuum correlations are strongest at short distances.

Ground state entanglement naturally follows an area law.

In a conformal field theory,
7.2 r ' 3

S =#—- —dalog -+ ... ! , B

€ € ‘ '

where a is a central charge. T

[Solodukhin; Casini, Huerta & Myers| T

Entanglement entropy encodes universal information.
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The area law

The area law term is divergent in field theory:

, A

This term looks a lot like the
Bekenstein-Hawking entropy:

- Ac?
AGH

LgBH
The entanglement result is consistent with G = 0.

What happens when we turn on gravity?
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Quantum

Scalar field @
Electromagnetic field — 0
Gravitational field ?<¢-caun- ©

Classical
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Electromagnetism

In a gauge theory, the degrees of freedom are non-local.

Electric field lines can only

end on charges: d \ / A
/ \
[}

\
- I < » |
V. E=p. ‘ .

| / \ |
by /
\
/
N\
. s
. -
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A constraint equation.

How do we divide these non-local degrees of freedom?

16
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Lattice gauge theory

Electromagnetism has a more subtle structure than a scalar.

For each link, let ¢ be the phase picked -
by a hoppi lectron: -~
up by a hopping electron p() “

peC, |pl=1 T
Let £ be the electric field,
E =ne, n € 2.
They are canonically conjugate
o, E] = .

Each link of the lattice is a quantum system:
a free particle on a circle of radius 1/e.
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Gauss’s law

Constraints restrict the Hilbert space.

In electrodynamics without charges, B
the constraint i1s Gauss's law: '
. Ey— o <~ Fy
V- -FE=0. \
Es

Gauss's law generates a gauge
transformation (-, at v.

On the lattice, we impose Gauss's law at each site:
n- @ /@

Because of these constraints, H no longer factors.
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Extended Hilbert space

How do we divide the degrees of
freedom between two regions?

We split each boundary link in half, o
putting half in A and half in B. o

Define the extended Hilbert space:

R ® ® ® ®
[WD 2011] == = = =@
® ® L] ® ® ®
f
Ha= QM. | XG. .

e€eA vEA

Where we impose Gauss's law at all interior vertices v.

H 4 contains surface degrees of freedom:
(p, E1) at all points on the boundary.

19
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Symmetry determines entanglement

The tensor product ‘H 4 ® Hp contains unphysical states.

@
L 2

0(}0
oo
0{':.*»0
e oo

Gauss's law at points on .S says that
electric fields match on both sides.

2
L 2

L 2
L 2
L 2
L 2
L 2
L 2

L 2
-0 - 0-=0--0-

L 4
®
L 4
L 2
L 2

The space of physical states is

-0 - 0--0-0-
vy)

L 2
L 2

H=Hs®Hp/Ts.

°
oo
oo
¢<:50

/J?o
*

This amounts to matching £ at S.

n

The symmetry tells us how to combine subsystems.
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Reduced density matrix

States of H are invariant under the surface symmetry.

Hence p, commutes with the electric fields normal to S.

We can simultaneously diagonalize £/, 1.

and p4 is block diagonal in this basis: s
e

pa = D p(EL)p(EL) i

Ions

p(E ) is the probability distribution
over different boundary conditions £/ .

p(E ) is a density matrix with fixed boundary conditions.
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Entanglement entropy
For gauge-invariant states the entropy simplifies: wo 2011

S = —tr(palogpa)
== p(E)logp(EL) + ) p(EL)S(p(EL)).

E, Ey

The first term is the entropy of the surface degrees of freedom.

-1
@
L 3 L 2
@ L 2
L 2 . 2

tr
: 2 2 2 @
s 2 s 2 @
@ @ @
s 3 2 3 L 2
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Surface degrees of freedom matter

Surface degrees of freedom make up O(1) of the entropy.
S=-— ZP(EL) logp(E ) + Z])(EL)S(;)(EL)).
]*‘J_ f';J_

This result has been checked for many systems:
e [he toric code (wo 201
@] ElectrOdynamlcs |n 2 + J. [/\g'.nn‘ Headrick, Jafferis, & Kasko .,’Ul‘ll

e Electrodynamics in 3 + 1 wo & wan 2014

The results generalizes to nonabelian theories (wo 2014
e Quark-antiquark pairs (Lewkowyez & Maldacena 2013)
® Yang—l\/lills in 1 + 1 [WD 2014, Gromov & Santos 2014]
e Yang-Mills in 2 + 1 at weak coupling (radicevic 2015)
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Quantum

Scalar field ®

Electromagnetic field o ——

Gravitational field ?<¢-caun- ©

Classical
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Phase space

The classical analog of a Hilbert space is a phase space.

P
A

The key structure is the 2mh
symplectic potential

» (/

© =pdq.

© encodes all the structure of classical mechanics:
e Relates symmetries and conserved charges.
e Tells us what is physical and what is gauge.
e Determines the Poisson brackets (~ commutators).

e Gives the density of states in phase space.
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Covariant phase space

We can associate a phase space to electrodynamics in a region.

This phase space is defined by the symplectic potential:

0= / ds,, 0",
JX

In electrodynamics we have — —
ot = F* §A,.

The vector potential is conjugate to the electric field.
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Covariant phase space

The symplectic potential ©® must be gauge invariant.

Under a gauge transformation A, — A, + 0,.«.

o = F" §A,,.
O — 0" + 0, (F™ §ar) .

This is a total derivative,
hence a surface integral

®©— 06+ % dS F | da.

S

We have to eliminate this anomalous term.

We set /| = 0: we would undercount the entropy.

Pirsa: 16050020 Page 26/48



Extended phase space

. extend the phase space. (wo & Freidel 2016
We introduce the ¢ € U(1) to the phase space.

This allows us to define an extended symplectic potential:

O = / d¥, 0" + ?é dS E, o 1. e ;
i A ? O -y
© is determined by gauge invariance: ---—*T;—If
the boundary term cancels out <-~%a) 5

the anomalous term.
The surface degrees of freedom (¢, /| ) are physical.

E| generates rotations of ¢ — the surface symmetry.
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Quantum

Scalar field @

Electromagnetic field o —— @

Gravitational field ?7€¢------

Classical
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Gravity

Gravity is a theory with a local symmetry, general covariance.

This symmetry leads to constraint equations:
equations of motion with no time derivatives.

The constraints are responsible
for the force of gravity:

V20 = 4nG p.

Regions of space are not independent subsystems.

We can treat them the same way as in electrodynamics.
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General relativity

The covariant canonical formalism extends naturally to gravity.

In general relativity the fundamental field is the metric g,,,.

In units where 167(¢ = 1,
the symplectic potential is

O = / ds, 0",
.

. “J

Where the vector field € is given by:

[Ashtekar; Crnkovi¢; Witten; Wald;. . .|

Or — (y;m-gu;"} . .(}/."u.(jn‘,‘.--;)V‘,j(syulgj’.
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General covariance

The symplectic potential © is not diffeomorphism invariant.

Let Y : M — M be a diffeomorphism.

Under this symmetry, 0 transforms as:
0" — Y*(0" + 0,Q" 0y ]). M
() is Wald's Noether charge: (wai 1003
Quvl€] = 0,8 — 0.€,.

There are two sources of non-invariance:
e O" transforms like a vector field.

e There is a boundary term that depends on Jy.
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Extended phase space

In gravity, a choice of gauge is a choice of coordinates.

Introduce X* : R* — M to the phase space wo « freidel 2016

R4 M

X" is the gravitational analog of .
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Extended phase space

Using X we define the extended symplectic potential:

o = / s, 0" + 5£ dS,, Q" [5x).
JX (o) J X (s)

© is determined by diffeomorphism invariance.

R.l :\ I
S -
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Surface symmetry

The surface symmetries are -
diffeomorphisms Z : R? — R? that . 1
change s and its frame. ( —

There are three classes of symmetries.
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Surface diffeomorphisms

Surface diffeomorphisms leave the entangling surface invariant,
but move the points around.

R«l er

>

Infinitesimal surface diffeomorphisms are vector fields such that

Wils=0 and  W|s #0.
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Surface translations

Surface translations move the entangling surface.

R4 R4

Infinitesimal surface translations are vector fields such that

They are not canonical symmetries of the phase space;
there can be flux of states through the boundary.
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Surface symmetry algebra
The generators are precisely encoded in the geometry of S:

e Surface diffeomorphisms are generated by
the curvature of the normal connection:

Diff(.S).
e Surface boosts are generated by the normal metric:
SL(2,R).

The Casimir is the area element.

These are the surface degrees of freedom analogous to £, .

They generate a nonabelian algebra: (wo & Freidger 2016)
Diff(.5) x SL(2,IR)”.

The geometry of the boundary is noncommutative.
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Quantum

Scalar field @

Electromagnetic field o —— @

Gravitational field “c=nmn= ©

Classical
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Building blocks of space

Space is a network of entangled subsystems.

[I\'ow‘lli & Slrmllll] [Vi(l.ll] [l).!\i.l\-‘u“ski‘ Yoshida, Harlow, & |’rf-'~.ki||]

What are the subsystems for gravity?

How are they entangled?
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Quantization

We have constructed classical subsystems,
the next step is to quantize them.

To quantize a system, first study
representations of its symmetries.

We have a huge symmetry group

Diff(S) x SL(2,R)”.

What can we say about its representations?
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Quantum surface symmetries

The surface symmetry is a semidirect product, like Poincaré.
[Wigner 1939]

Poincaré Surface symmetry

SO(1,3) x R? Diff(S) x SL(2,R)®

Translations Surface boosts

4-momentum Area element

Mass Total area

Little group SO(3) | Area-Preserving Diffeomorphisms APD(.S)
Spin Irreducible representation of APD(.5)

Representations labelled by area and transform under APD.
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Quantum phase space

What are the area-preserving diffeomorphisms?

APD(S?) is the symmetry group
of a classical phase space: a sphere!

Representations are quantizations of
this phase space.

The size of a Planckian cell is determined by ©:
the Planck area ~ Gh/c?.

Is the horizon quantized just like a phase space?
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Conclusions

e Entanglement is everywhere — even empty space.

e Local symmetries demand a new approach to subsystems:

Surface degrees of freedom
Surface symmetry

e Surface symmetry determines how states are entangled.

e Surface symmetry is present in classical gravity, and offers:

A definition of local subsystems,
A way to understand entropy of black holes, and
A new perspective on quantizing gravity.
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Surface symmetry generators
The generators of surface-preserving symmetries are geometric.

In coordinates around S the metric takes the form
ds? = /J...;J-(l:r"'(l:z:-" + Qv ((1(7‘”’ — /lﬁ"(l;'r“") ((lrf"' — A_’}-’(l:z.r-")

The generators are given by

Hy, = /

g

- (H" N(OW1) + Wi Fn)

The boost generator is the conformal normal metric:

[_].,' ) = \/(_1 /?.u,';‘.fkj
N

The diffeomorphism generator is the curvature of A"

({
= YL (A" — 9 AF + [Ag, Ay
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Surface symmetry algebra

The relation {H,, H, } = Hy, ., gives the Poisson brackets:

{H (o), H ' (")} = (6! Hy ' — Hi'6))(0)0'P =2 (o, 0"),
{Fu(0), F,)(0")} = F(6")0,6'P " (0,0") — F,(0)8,0" ) (0,0"),
[H (o), F,(c")} = H;(6"0,6'P~2(a,0").

/

These realize the surface symmetry group

G = Diff(S) x SL(2, R)"

The SL(2,R) Casimir is det H = — det q.

The normal metric breaks SL(2,R) to a boost subgroup
(c.f. Carlip & Teitelboim)

50
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