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Abstract: <p>Effective field theories (EFT) are everywhere in particle physics. Given an EFT, the first question we ask is &ocawvhat are all the
operators consistent with the symmetries and degrees of freedom at a particular expansion order? In this talk | will show how this question can be
attacked, and often answered, using an object called a Hilbert series.</p>
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Wilsonian picture of field theory
4
L = /d L E C; Oz
()

take all degrees of freedom, form local operators
of increasing dimension

all operators consistent with symmetries must be
Included

lowest mass dimension operators dominate IR physics
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SM is a poster child EFT: SMEFT

degrees of freedom are: Q, u¢, d°¢, L, e°, H, gauge fields
symmetry is: Lorentz ® SU(3)ceSU((2)w® U(1)Y

low-dimension operators are easy, but quickly gets more
complicated

dim <4: Standard Model
[Weinberg ‘79]

. _ [Buchmuller, Wyler '86,
dim 6: 63 terms (neglecting flavor) Grzadkowski et al '10]

dim 7: 20 terms [Lehman '14]

dim 5: 1 operator (neutrino mass)

dim 8: no complete set known (as of Oct. 2015)
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Can this be extended?

1.) to dimension-8? can we get the form (= field
content) of operators in

2.) to all orders”? o
addition to total #?

3.) to other EFTs?

higher dimension operators are complicated because there
are more fields = number ways to contract indices grows
rapidly!

Yes, using algebraic technique known as
Hilbert Series
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Outline

motivation for d > 6 in the SMEFT

iIntroduction to Hilbert series, simple example

towards full SMEFT, no derivatives

adding derivatives: EOM and IBP troubles

‘final’ form: d = 8,9,10... in SMEFT
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Why?

precision: LHC, HL-LHC, etc. will soon test SM to
unprecedented precision = sensitivity to effects from even

higher dimension

1607.04548v1
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Why?

precision: LHC, HL-LHC, etc. will soon test SM to
unprecedented precision = sensitivity to effects from even
higher dimension

new effects: lower dim. operators have accidental
symmetries (i.e. baryon #, lepton #). Higher dim. operators
are the first place violation of these symmetries occurs
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How?

Consider a simple setup: ¢, ¢* with charge +1, -1

all invariants are of the form (¢ ¢*)", and for each n
there is only one invariant

Hilbert series is defined as: h = Z Ko 1"

Z N

number of 1nvariants of degree n twvariants

for us:

degree = mass dimension, t = symmetry-invariant operators
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degree = mass dimension, t = symmetry-invariant operators

hg =1+ (00") + (60")* + (¢6")° + - -

only one invariant at each order: ki = 1
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degree = mass dimension, t = symmetry-invariant operators

hg =1+ (00") + (60")* + (¢6")° + - -

only one invariant at each order: ki = 1

treat ¢, ¢* as complex #, modulus 1 rather than quantum fields
(call it a "spurion’)... then we can formally sum series

1
1 — (¢po*)

h’ff) —
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rewrite

: 1 /Z'” df
bp = : 0N/ - . ;
" on )y (1= geif) (1 — gre—i9)

change to z = ¢*

~
A

] 1 ?g dz 1
bp = _ _ o
o= 2 (L= 92)(1 - )

overly complicated for simple example, but will be
generalizable to more fields, symmetries
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degree = mass dimension, t = symmetry-invariant operators

hg =1+ (00") + (60")* + (¢6")° + - -

only one invariant at each order: ki = 1
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1
(1= ¢2)(1 = %)
+z(¢ + d(Pp™) + (/)((/)(/)*)2 + (/)((/)(/)*)3 + )

=1+ (¢pd™) + (¢*)* + (¢*)° + - -

+= (" + " (pd*) + ¢  (Ppd™)? + ¢* (p9*)> + - - -

/

2 | =

#

¢

generates all possible combinations of ¢, ¢*. Combinations
can be grouped according to their charge

only the combinations at O(1) (charge zero) are picked out
by the contour integral dz/z
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manipulate further

%

| — oxp ( —log(1l — ¢z) — log(1 — ¢ ))

(1-¢2)(1- £)

= exp (Z { ((/){f)" N !l((/i* ),})

~

this will be the most useful (= generalizable) form

generating function written as “Plethystic exponential” = PE
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manipulate further

1 _ =exp ( —log(1l — ¢z) — log(1 — (/i ))
(1—¢2)(1 - %) /i
B — [ (pz)" 1 (qb* )})
= exp (,Z_:l { . + ~\B
obyects ‘charge’

this will be the most useful (= generalizable) form

generating function written as “Plethystic exponential” = PE
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Plethystic exponential

Ir 1o PR e g
3 / @ :
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Hilbert series
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r , ; @ |
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more complicated example:

b1, B}, b, B3

charge: —+1, —1, +2, =2
now there are four invariants
(0101), (203), (6703), (0% P2)
based on last example, may guess that

1

he o, =
)g)|(,.)_3

(1= (@100)) (1 — (0265) (1 — (#763)) (L — (6122))

generates all invariants
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not correct! misses relations among invariants:

(q)l(, ) (] (/)2) = ((/’)l(/)’f)z (p20hs)

correct series is

) (2 %2 ) g
I — @71 Ppachs

(1= (6:160)(1 — (6203)(1 — (D363)(1 — (91262))

/)'(j)l (;")2 E—
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not correct! misses relations among invariants:

o e ) “syzygy”
(7 03) (017 2) = (P17)° (h2bh)

correct series is

) (2 %2 ) g
I — @71 Ppachs

(1= (0107))(1 = (¢203))(1 = (¢705))(1 = (¢7%2))

hpyps =

however, if we work with the PE, we get this automatically.

extend

(p12)’ l ((3)' )"' + (¢p227) Lo\
exp E == o _( " ) })
I ( { r r\ z r r\ z2

r=1
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1 j£ dz 1
210 Jizj=1 2 (1= ¢12)(1 — ZL)(1 — ¢p22)(1 — 22)

-~ ]
~ A-r

multiple poles, but not all reside in |z| < 1 ($1, ¢, are also
mod <1)

. 1/(,")'

Molien form = PE
o ©
VA | V|2 = 1 developed to capture

iInvariants correctly
O
oM

i @
- \/l f 0o 4/ L /cho

[Melial
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Molien/Hilbert

developed these tools to study invariant polynomials
related to mathematics of rings, ideals

Use in formal field theory (counting BPS states, moduli space)

[Benvenuti, Feng, Hanany, He '06] [Feng, Hanany, He '07]
[Dolan '07] [Gray, Hanany, He, Jejjala, Mekareeya ‘08]

[Hanany, Mekareeya, Torri '08] ...many more

Some use in counting flavor invariants

[Jenkins, Manohar '09], [Hanany, Jenkins, Manohar, Torri '10],
[Merle, Zwicky "11]

Pirsa: 16050004 Page 28/82



Pirsa: 16050004

all invariants, keeping track of redundancies captured by
the PE approach. We want to use this to generate all EFT
operators; ¢ — Q, uc, d°, H, Fyy, etc.

Need to:
1.) expand to other larger groups

2.) deal with anticommuting objects

3.) incorporate derivatives ; brings difficulty
of equations of motion (EOM) and
iIntegration by parts (IBP)
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Other groups:

S {2 Leoiyr (@) | 1 g5y
e (A (5) i (3) )

-
ot B
r=1

o

for a “field’ in a representation R of a group G,

z = Xr(z;), the character of the representation R

character?

if, under G ¢ — Dr.ij¢; then Xxr =tr(Dg)

Xr are functions of j complex numbers, j = rank of G

(1 for SU(2), 2 for SU(3), etc..)
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Other groups:
1 "d

[z '
— — / dp . Haar measure
2w |z _
Haar measure: volume of compact group expressed as
an integral over the | complex variables = Cartan
subalgebra variables

| 1 [, (-1
SU(Z) /d“’SU(‘J) — i %dﬂ g

| ' | — 2129 Z
%(Lﬁ:;(!:ﬁig(l— )(l—
A Z9

SU(3): /dl*’-b'(.’(.'i) - (27i)’

bo

S V)
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Peter-Weyl theorem: characters of compact Lie groups
form an orthonormal basis set for functions of the j complex
variables

/ dpexa (zi) Xn(2i) = 0un
Ja

and we can expand any function of z; as a linear
combination of xw(zi)

F(z) = Z Anr xm(2i)
M K.

coefficient, ndep. of 2

can project out any Am using orthonormality
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So, for some field content in irreps under a SU(2):

1.) form the PE: PE[d®1(x(2)) +d2(X'(2)) + ...]

2.) PE is a function of the complex variables parameterizing
the groups, z. Can be expanded in terms of characters

PE = Z Anr xm(2) (singlet, doublet, triplet, otc..)
M

3.) Integrate over Haar measure
/ dsu (2) Z Apnr xm(2)
' M

only piece that survives is Ao, coefficient of singlet/
invariant irrep
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Generalizes to multiple symmetry groups

1.) form the PE: PE[®1(X1(21), X2(Z2)...) +®2(X1'(21),X'2(22)) + ...]

2.) PE is a function of the complex variables parameterizing
the groups, z. can be expanded in terms of characters

PE=T] (Z AG S, (,:,_)) (combo of all veps of all groups)
M

\
T

3.) Integrate over Haar measure

/Hf/!f( Z AGy X (2 )) Hlt()
G G

only piece that survives is Ao, coefficient of overall singlet/
invariant irrep
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Ex: doublet scalar with Higgs charges under SU(2)w®U(1)y

1] 11
PE[H(0,5,—5)+ H'(0, =, 5

N\ 4,
_),,,,1/2]
z
55 — ggm—/ E[H, H)
(27i)? ]

1 .
PE[H(;; + :),“51/2 + HT (:: 4

LAY
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Fermions:

asymmetric, plus they transform under Lorentz group

Asymmetry:

Plethystic Exponential (PE) Fieney 4]

— Fermionic Plethystic Exponential (PEF)

lr—}-]

PEF[)| = exp { Z ;

r=1

(¥ x(z))"}

character

Lorentz group:

LH, RH fermions are in 2D reps of the Lorentz group
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Fermions:
BUT: orthonormality of characters only applies to compact

Lie groups; SO(3,1) not compact

However: we don't care about dynamics, just counting invariants.
Work in Euclidean space!

SO(3,1) = SO(4) = SU(2)r ® SU(2)L
Lorentz group just looks like two more symmetry groups

use LH fermions only for simplicity: Q, ue, de¢, etc ~ (0, 1/2)

Qf, ute, dte, etc ~ (1/2, 0)
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Field strengths:

X5, =X £ iX,, in(1,0)0r(0,1)irrep.
put the pieces together:

Ho,sm = /HW'(:PE[H FY*WH G 4 ce ]><

/ PEF|Q,u",d, L,e‘ + c.c|

[SU(2), x SU(2)r] x SU(3). x SU(2)w x U(1)y

generates all invariants (with one flavor of QUDLE) with no
derivatives
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comments:

1.) NF > 1 easy:

PEF[N )| = exp { Z

r=1

(N x(z)" }

,,.
2.) finding all poles (= invariants to all order) of the giant
fraction is hard. Instead, weight by mass dimension
H—=eH Q— &32Q, etc

expand to desired order in €. Now all poles are at

zi = 0: much easier

3.) not restricted to SMEFT. Works for any set of ‘fields’ in
linear representations of groups
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example: QQQL operators, Nf = 3
PEF([3Q(0,1/2;3,2,1/6) +3L(0,1/2;1,2,—-1/2)]

X,y for SU(2)r x SU(2); (w1, w2) for SU(3), z for SU(2)w, u for U(1)y

1 1 w: 1 :
PEF|3 Q(y + —) (::: + —) (*wl -+ = —+ —) ul/6
Y 2

un w9

1 1 ‘
+3 L (y + —) (, + :) 'u._l/')]

Y

o~

/ ditrorentz (2, y) divsy 3y (w1, wa)dpsy ) (2)dpy 1y (w) PEF[3Q, 3L

1+ 57LQ°% + 4818 L* Q° + 162774 L Q° + - --
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derivatives:

general EFT expansion can have derivatives on fields
as well as fields

LDo", (0,0)" 0", etc

since PE generates all combinations, we need to add d,¢ to PE
..and also 02,0 , 93, ..
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derivatives:

general EFT expansion can have derivatives on fields
as well as fields

LDo", (0,0)" 0", etc

since PE generates all combinations, we need to add d,¢ to PE
..and also 02,0 , 93, ..

du ~ (1/2, 1/2) of Lorentz, so doesn't look too terrible
but even at 02 there are two possibilities:
e, Uo
(1,1), (0,0)
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but any polynomial containing any ¢ formed by the PE

e, oo
always reduces via the EOM
O¢p = m?¢* + \op° (for o theory)

form of RHS of EOM is not important. We only care that [l¢ can
always be replaced by terms with fewer derivatives

SO:. PE|¢p,Uplpom = PE|¢]
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by same logic, at higher derivative order, only keep the fully
symmetric term

PE[¢] = PE[p(0,0) + D ¢(1/2,1/2) + D* ¢p(1,1) + - - -]
similar story for fermions:

derivative on LH field:

9%  Q
[ R I SRS |
(5:3)@0,5) = (5,0) & (5, 1)

EOM: m(g = Yu H “r‘]“ + Yd H* d“T
only involves the (1/2,0) part
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EOM tells us (1/2,0) part of 0,Q is redundant with terms w/
fewer derivatives. Only add (1/2,1) term to PEF..

1 1 . 3
PEF[¢)]| = PEF (0, Z) + l)’t/f(ﬁ, 1) + D%(1, E) 4]
& analogous story for field strengths

we can now ‘derivative-extend’ the SM PE.

11 111 1 o 11
H — H(().(); = —,—) + 1)11(__, = r_,___) + 1_)-11(1* L __)
N T o
SU@ R SU@),  SU@)w, U(l)y + same for all other fields

Generates all invariant polynomials of fields & their
derivatives, no EOM redundancy
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comments:

1.) for each derivative, we need a new entry in the PE/PEF.
Can sum derivatives to all orders:

(1- D%

(scalars)
(1=Dzxy)(l—D/(xy))(1 —Dxz/y)(1 — Dy/x)

{z,y} parametrize SU(2)L x SU(2)r

2.) D is a separate spurion; i.e. D¢ is two separate objects,
not one. This allows us to keep track of the total # derivatives
In an invariant

3.) At a given mass dimension, don't need all orders (at dim=8,
know <3 derivs)
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Integration by parts (IBP)

derivative-extended PE still contains redundancy from IBP:
ex.)

D,HD"HH" D,H'D*H'H? ~D,HD'H'(H'H)

are not all independent

ex.)
D{,,,,,}HTD{’”’}H completely reduces by IBP + EOM

options:
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explore using a toy theory of a single real scalar

| , 11 S
hg = /‘ZN-W(:Z),,ff/ﬂ.s‘rf(z)l.,PE[G’)U +D(5:5)+ D*(1,1) +---)]

we can group terms in hy, by the number of D and ¢

O(D™¢™) = m derivs, n scalars

all O(D™¢™) must come from D x O(D™ 1¢™)

if we can count the number of  O(D™™'¢") | thats a
set of constraints on the O(D™¢™)
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total # of invariants, including IBP redundancy

# O(Dm'(/)“) terms

it O(D‘m,—l(/)-n,) terms
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total # of invariants, including IBP redundancy

# O(D"P™) terms| - | # O(D™ 1¢") terms

to ge’[ i O(Dm— 1 (/)'n,):

recall PE generates all combinations, not just invariants.
we just need to pick out the part of the PE in the (1/2, 1/2)

representation : .
P ]’E[(p] — Z Aqﬁ,lf XRr(2i)
R
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total # of invariants, including IBP redundancy

# O(D™¢") terms| - | # O(D™ 1¢™) terms

to ge’[ i O(D'm.—l(/)n):

recall PE generates all combinations, not just invariants.
we just need to pick out the part of the PE in the (1/2, 1/2)

representation .
P PE[(;)] — Z Ad),H XRr(2i)
R

' | 1
h’D(/) — / d/f’b'[.f(‘z]);,(]*/I*S(.f(2)n () ))PE[(/)] = A(l/2,l/2)

e e

picks out just the term we want
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conjecture:
number of invariants from a set of fields in linear

representations of symmetry groups, including EOM
and IBP redundancy

he, w; — Dhp g, s

_

Hilbert series,

. , gefs o
Hilbert series, Jimension projecting ouf
Projecting out (1/2,1/72)

correct

mvar:ahh
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In gory detail:  parametrize SU(2), x SU(2)r with {x,y}

dug
r_%—\
1 (=2 [ (1—y?) L]
o i)? / dx . / dy :—/ X (I = I)(; + 2 )(!-/ + y))
: (1 D?) ¢
PE
8 {(I Dxy)(l—=D/(xy))(l —Dax/y)(l /)_r//.r)}
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some dim-8, according to this algorithm:

(dl d.) (el e ) F! (ulu el el 2(dbd ) (ub u ) FE (dld ) (LY LYFE
(ubu ) (LY LYF! (el e (LY LYFE (ehe QT Q)P (d.Q) (el LY P
(dQ)el LNYFR 2LV LQ'Q)FE  2(dld)(QT Q) FY 2 (ul u ) Q! Q)FY
3(e. L) (u. Q) F* 3(u.d.)Q* It (dl d (LY LYW (el e (LY LYWL

(el e QT QYW Yu (Lt Lywk LY L)Wk (el LY. QywE
| ').1 ]-. .[.u‘_u). ) _ ( ) _ (¢ )_e _ 112 af‘ODO

(e YA QOYWE 2l d ) QP QW E 2 (ul u ) (QTQYWE 3 (LY LY(QT Q)W

2(Q1 Q)W 3 (e L)(u, QYW 3(u.d)Q* wh (d)? &2 G

(H,i )4 u;‘f el (d, d, }{1“: €.) el (”j (el en) el 4(d! fl’lr.){u: u, )(.""
(QtQ)eleyct  (dldyL et (Wu LY LYGE 2(QN Q)LL) G
Ll d ) QT QYGY 4 (u) u)(QT Q) GF 2(Q")? Q*G- (d.Q)(el LYY GF

(d. Q)(er LYGT  3(e. L) (u. Q) G* 6 (dou,) Q* G"

3D (d d.)(L H e,) D(leLHe) 3D(LYLYLHe) 3D(d d)QHdJ,)
3D(ele)QHA) 6D(L'LYQHI) 6D () VL He) 6D(QTQNQHd,)
3D (du L H ¢ 6D d)QH w,) 3D (ele)QH u,) nf)u LY(Q H u,)
6DQTOVQH ) 3Dl u)LHe) 6Dbu)QHA) 3D ulu)(QH u,)

181 at O(D)
535 total (937 counting +h.c. separately)
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issues:

method breaks down if # O(D™ *¢™)terms
are not independent..

problems arise when there are multiple ways to partition
derivatives on fields

m=6, n=4: (g iy OV ) (0P 0,0)

02(/) e 0 4
( ) ( ) (('){“!V}(‘){V?p}(f)) ((’)“d) (:)/)(.b)

In 1510.00372, we treated these terms by manually calculating
constraints: not guaranteed to capture all instances where linear
iIndependence falils...
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Henning, Lu, Melia, Murayama 1512.03433

2

instead of /H dpc (1 - D(1/2, 1/2)) PE[¢ P(1 — D)]:

.’ . . |
P (1 D(1/2,1/2) + D*((1,0) + (0,1)) — D3(1/2,1/2) 4 /)')
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Henning, Lu, Melia, Murayama 1512.03433

instead of /H dpc (1 - D(1/2, 1/2)) PE[¢ P(1 — D?)]:

.’ . . |
P (1 D(1/2,1/2) + D*((1,0) + (0,1)) — D3(1/2,1/2) 4 /)')

use.

: ' | 9
h,qb = / H(l/;,(; F X PE[(/) [’(l —_ /)“)]

works, free of issues

« extend d=8 SMEFT set to 992 (+62 from Lehman, AM)
e count d=9,10,11,12 SMEFT operators (560, 15456, 11962..)

* possible compact ‘all orders’ form
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Why? (l D(1/2,1/2) + D*((1,0) + (0,1)) — D3(1/2,1/2) 4 1)')

extend spacetime symmetry to conformal group: SO(4,2)
operators in conformal theory: primary O, descendents 9,0
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Why? (l D(1/2,1/2) + D*((1,0) + (0,1)) — D3(1/2,1/2) 4 1)')

extend spacetime symmetry to conformal group: SO(4,2)
operators in conformal theory: primary O, descendents 9,0

removing IBP redundancy = eliminating all operators that are
descendants of other ops.

accomplished by keeping only the highest conformal
weight of operator products

integrate over SO(4,2)/SO(3,1) (dilations, conformal trans)

results in P prefactor
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What now?

« knowing all dim-8 SMEFT, we can study which
operators have an impact at LHC. Specifically,
dim-8 important to understand uncertainty on dim-6
|.A5',.-\] + A(; —+— .”15|2 D) ‘X’l.u;,.'\f|2 -+ 2 R(’(/‘.s';\f .‘1(,’) -+ |/1(;‘2 -I— 2 ]-l).(J(Agl‘Ux’l;.;) e
[op — hV, Lehman, AM in progress]

« analytic properties?

» application to EFT with nonlinear fields?
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conclusions:

, , # and form of all
given symmetry . invariant (Lorentz &

group G, : - gauge) operators,
fields i, Pi, Xi-R filbert series accounts for IBP,

EOM

* generates all possible combinations of operators, uses
character orthonormality to pick out invariants

» derivatives tricky, but issues recently overcome

lots of interesting directions to explore!
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