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Abstract: <p>Recent theoretical and experimental efforts have been focused on the identification of excitations in quantum spin ice. Due to their
relation to the magnetic monopoles of classical spin ice, their quantum counterparts, called spinons, are a highly sought-after manifestation of
fractionalization in frustrated quantum magnets like Yb2Ti207. Of particular current interest is the quantum dynamics of spinons, namely, their
modes of propagation and interaction with the strongly correlated spin background. To investigate this dynamics, we study excited quantum square
ice, as captured by the spin-1/2 checkerboard-lattice XXZ model. We formulate effective free-spinon theories in the strong Ising coupling limit, with
spinons either deconfined or artificially confined to nearest-neighbor distance, and calculate the corresponding approximate dynamic spin-structure
factors (DSFs). We then evaluate the DSF of the fully interacting model exactly for clusters of up to 72 sites. The resulting spectra allow us to
identify dispersive fingerprints of coherent spinon propagation in the correlated ~ vacuum" of quantum square ice within an extended low-energy
regime. We thus provide unbiased evidence for the formation of coherent quasiparticlesin quantum spin ice above the Ising gap.</p>
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Motivation — Modeling — Results

Dynamics in strongly correlated quantum matter

What are they? Can we do anything with them?

In particular:

~ what happens if there is no Landau order?
~ what observables to look at?

— Dynamic responses:

~ S(k,w) Z| (m|S,F0)*6(E,, — Ey — hw)

m
~ sharp bands — free excitations

~ free excitations — sharp bands?

Pirsa: 16040099 Page 3/26



Pirsa: 16040099

Motivation — Modeling — Results

Fractionalization of spin flips

paoC, PHYS. 80C:, 1966, voL, 87

Spin waves in RbMnF,

C. G. WINDSORY and R. W, H. STEVENSON}

+ Solid State Physics Division, Atoric Energy Research Establishment, Harwell,
Didcot, Berks,
+ Department of Natural Philosophy, Aberdeen University, Aberdeen

MS., received 12th October 1963
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Figure 2, Spin waves in RbMnF, at 4 2 °K with q vectors distnbuted over & 10

plane, The smooth curves show the calculated dispersion along pnr!u.\ill'

directions with J, = 3 4%, J; = J, = 00 "k, These values were found froma least-

squares analysis, the exact direction of all the q vectors being taken into accouct.

‘The fact that the linear part of the curve extends so close to the oripn reflects the
very small anisotropy field.

ARTICLES nature
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Confinement of fractional quantum number
particles in a condensed-matter system

Bella Lake'?*, Alexei M, Tsvelik’*, Susanne Notbohm'*, D, Alan Tennant'?, Toby G, Perring™*,
Manfred Reehuis', Chinnathambi Sekar™, Gernot Krabbes” and Bernd Blchner”
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Figure 2 | High-energy inelastic neutron scattering data for CaCu;03.
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Spinons in 3D: spin ice — quantum spin ice

g uantum
critical

Pirsa: 16040099 Page 5/26



Pirsa: 16040099

Motivation — Modeling — Results

Spinons in 3D: spin ice — quantum spin ice
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Spinons in 3D: spin ice — quantum spin ice
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Spinon dynamics in quantum spin ice
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A measure of monopole inertia in the quantum spin
icesz-nzo7 234561234561
LiDong Pan, N. J. Laurita, Kate A. Ross, Bruce D, Gaulin & N, P, Armitage

Nature Physics 12, 361<366 (2016) | doi:10.1038/nphys3608
Received 24 April 2015 | Accepted 19 November 2015 | Published online 21 December 2015

Possible observation of highly itinerant quantum SpinOnS are deconﬁned

magnetic monopoles in the frustrated pyrochlore

Yb,Ti,O but are they free?

Y. Tokiwa, T. Yamashita, M, Udagawa, S. Kittaka, T Sakakibara, D, Terazawa, Y. Shimoyama,
T. Terashima, Y. Yasui, T. Shibauchi & Y, Matsuda

Nature Communications 7, Article number: 10807 | doi:10.1038/ncomms 10807
Received 26 May 2015 | Accepled 22 January 2016 | Published 25 February 2016
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Down to 2D: quantum square ice
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Down to 2D: quantum square ice
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Excited quantum square ice
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The checkerboard-lattice XXZ model

ot
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Single spin flip in the strong Ising limit
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Exact solution at RK point

H = —Jy4 Z(”j':["‘ij”j + h.c.),
(4.9)
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Confined propagation — two processes

Confined dynamics — effective "averaged” dipole tight binding on
the checkerboard lattice with

t1/Jy ~ 0.8069 and t,/.J; ~ 0.3257
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Confined process #1: "leapfrog”

Equivalent to hopping on
self-avoiding polygons
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Confined process #2: 'reconnection’

Mostly equivalent to hopping on
1D Lieb lattices
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Confined propagation — two processes

Confined dynamics — effective "averaged” dipole tight binding on
the checkerboard lattice with

t1/Jy ~ 0.8069 and t,/.J; ~ 0.3257
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Confined propagation — two processes

Confined dynamics — effective "averaged” dipole tight binding on
the checkerboard lattice with

t1/Jy ~ 0.8069 and t,/.J; ~ 0.3257
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Confined propagation - structure factor
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sharp peaks — coherence
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P Higher energies:

broadening — restricted kinetics
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Deconfined dynamics

At long distances = 2 x monopole tight binding on square lattice
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Deconfined propagation - structure factor
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» evidence for free spinons
at low energies
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Deconfined propagation - structure factor
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Conclusions

» confined case: two (almost) free processes
— combined: effectively free "bispinon’

P deconfined case: dispersive lower bound of 2-spinon
continuum — spinon freedom at low energies

Outlook: defects? 3D?J, 7
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