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Abstract: <p>I will discuss a natural basis of CFT operators for probing dual gravitational physics in a diffeomorphism-invariant manner. On the
CFT side, these operators are aready well-known: they are 'OPE Blocks' that contribute to the Operator Product Expansion with fixed Casimir. On
the gravity side, | will show that these OPE blocks are dua to diff-invariant geodesic or surface operators. Our new entry to the holographic
dictionary can be understood as an operator generalization of the Ryu-Takayanagi proposal and | will show it gives a unified description for a host
of important resultsin holography. </p>
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Motivation

There is an uncomfortable asymmetry in our use of the holographic
dictionary:

Boundary: Gauge-invariance is sacrosanct.

* We always use gauge-invariant observables (eg. O = Tr(X) ) to probe the
bulk and vice-versa.

Bulk: Diff-invariance is required...  in the same way that flossing is required.

* When we visit an expert twice a year, we acknowledge the importance of diff-
invariance (naive local observables require gravitational dressing).

* We really only worry about it once a month or so.

* We are usually happy to work with local quantities (eg. some field ¢(x) ).
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Motivation

There is an uncomfortable asymmetry in our use of the holographic
dictionary:

Boundary: Gauge-invariance is sacrosanct.
* We always use gauge-invariant observables (eg. O = Tr(X) ) to probe the
bulk and vice-versa.

Bulk: Diff-invariance is required...  in the same way that flossing is required.

* When we visit an expert twice a year, we acknowledge the importance of diff-
invariance (naive local observables require gravitational dressing).

* We really only worry about it once a month or so.

* We are usually happy to work with local quantities (eg. some field ¢(x) ).

Worrying about diff-invariance is largely seen as adding unpleasant
(and unnecessary) complications.
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Is this a fair assessment?

Aim of this talk: To convince you the answer is NO.
NO to what?

No, talking about bulk gravitational physics in naturally diff-invariant, non-local
variables is NOT more complicated nor unpleasant.

There is ample historical precedent that this might be true, or is at least
conceptually pleasing.

* (Strings, branes, S-matrices, ...)

From amplitudes: have learned it can be important to be mindful of the symmetries
we make manifest, and useful to get a little healthy distance from locality.
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Prototypical Example

* We already have one well-known, well-defined example of what we’re
looking for:

* The Ryu-Takayanagi (RT/HRT) proposal connects:
1) In the CFT:

C A D

The entanglement entropy of a
region A on the boundary as well as
its modular Hamiltonian H,,,,4
(Natural, nonlocal, Gauge-invariant)
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A Better Dictionary 1: The Boundary

What are natural non-local vdriables in the CFT?

* There already exists a well-upderstood and powerful framework: The
Operator Product Expansiorn (OPE):

* Decompose bilocal operatorsinto a sum of non-lo

O, (z) O, (0) = Z Cijk lJ'la‘ T ([ by 280, 4 by a0, 0, + ...) O (0)
™

Pirsa: 16040089 Page 7/66



A Better Dictionary 1: The Boundary

What are natural non-local variables in the CFT?

* There already exists a well-understood and powerful framework: The
Operator Product Expansion (OPE):

* Decompose bilocal operators into a sum of non-local OPE blocks 5(x, v)
O; (x)O; (0) = Z Clijk |:1:|A"_A'i_A-"' (1 + by 20, 4+ baa"2"0,0, + ...) Ok (0)
k

* Central to our understanding of CFT (bootstrap, etc... )
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A Better Dictionary 1: The Boundary

What are natural non-local variables in the CFT?

* There already exists a well-understood and powerful framework: The
Operator Product Expansion (OPE):

* Decompose bilocal operators into a sum of non-local OPE blocks 5(x, v)
O; (x)O; (0) = Z Cijk 2| 2F TR R (1 4 by "0, + be 22" 0,0, + ...) Ok (0)
k

* Central to our understanding of CFT (bootstrap, etc... )
* Separates kinematics of conformal invariance and dynamical data of theory

* The OPE block is a natural choice of fundamental variable for CFT
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A Better Dictionary 1: The Boundary

What are natural non-local variables in the CFT?

* There already exists a well-understood and powerful framework: The
Operator Product Expansion (OPE):

* Decompose bilocal operators into a sum of non-local OPE blocks 5(x, v)
O; (x)O; (0) = Z Cijk 2| 2F TR R (1 4 by "0, + be 22" 0,0, + ...) Ok (0)
k

* Central to our understanding of CFT (bootstrap, etc... )
* Separates kinematics of conformal invariance and dynamical data of theory

* The OPE block is a natural choice of fundamental variable for CFT
* Non-local, gauge-invariant, transforms in simple representation of Conformal Group

* |t already appears in our benchmark example: we will see that the modular
Hamiltonian has a simple expression in the language of OPE blocks.
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A Better Dictionary 2: The Bulk

What are natural non-local variables in the CFT?

* Precisely as in RT, a natural set of non-local, diff-invariant objects are minimal
(extremal) surfaces and geodesics.

* We can think of their areas as integrating the unit operator over the minimal

R &

* A natural generalization then is:

6= [ davie) F
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The Kinematic Dictionary

* In this talk | will establish a correspondence
B(x,y) & ¢ (x,y)

between OPE Blocks and geodesic operators (and extensions to surface operators)

* This will be a powerful framework, It brings together many familiar ideas in holography,
including:

1. The Entanglement F|rst Law and Elnstelns Equations [Faulkner, Guica, Hartman, Lashkari,

2. Geodesw Wltten dlagrams and conformal blocks [1ijano, Kraus, Perimutter, Snively]

g

The HKLL construction of interacting ‘local’ bulk fields

4, de Sitter dynamlcs for the varlatlons of EE [de Boer, Heller, Myers, Neiman
ozaki, Numas: , Prudenziati, Takayanagi|, [Bhattacharya, Takayanagi
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A Survey of Kinematic Space




Kinematic Space

* Our non-local, gauge-invariant entries to the holographic dictionary are
best organized by a “kinematic space’:

* Consider ordered pairs of spacelike separated points on the CFT, cylinder
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Kinematic Space

* Our non-local, gauge-invariant entries to the holographic dictionary are
best organized by a “kinematic space’:

* Consider ordered pairs of spacelike separated points on the CFT, cylinder

rre  OYR “
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Kinematic Space

* Can we assign a metric to kinematic space?

dsk = wy (@) detdylf + fiv (z,y) detda” + f4Y (z,y) dy*dy”

L 1

* The metric on /C should be Irvariant under conformal transformations.
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Kinematic Space

* Can we assign a metric to kinematic space?
dsi- = [ (z,y) datdy” + f5 (x,y) datda” + f3Y (x,y) dy"dy”

* The metric on K should be invariant under conformal transformations.
* No terms like dx*dx" or dy*dy":

oy T+ dx e oy
TOo  oy+dy Lo ey+dy
* Metric transforms like a pair of operators . da'™ dy'® o
of conformal dimension (1,1) Juv (z,y) = j(rﬂ (", y")

dxt dxv
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Kinematic Space for AdS5 /CFT,

* This metric simplifies for d=2 because SO(2,2) = S0O(2,1) X SO(2,1):

* Change to left-moving and right-moving coordinates { Az =1, z.=q, z < Z }for

the CFT
1 [dg? —dI* dg® — di? 1 . ‘
2 _ .2 2
| ) ds* = 5 |: 2 -+ l—2 = 5 [d"’z + (,l.sg]
N
VAN S
» (2) ‘ ]
Wy, dS. dS:
q

* We can also restrict to pairs of points that lie on a time slice,
say t=0, (or geodesics that lie in a 2-dimensional
hyperbolic plane). Then fix z = Z, and take the diagonal
space in the two coordinates
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Kinematic Metric

* Has a notion of causality: Partial order of causal diamonds.
__ i
4 ¢
RN
% N\ | GR
N bY N/
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Kinematic Space for AdS5 /CFT,

* Our coordinates on the plane cover a patch of de Sitter. In global
coordinates:

O S w/2
\\\ \ ’ }/J‘ .

0 — 0+
0 aO— T —«
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summary

* Kinematic Space is the space of:
1. Ordered pairs of points (x;, yr) in the CFT

2. Oriented geodesics Yy, y, in the AdS;

* Kinematic space is Lorentzian metric space of signature (2,2), with a causal
ordering

* For AdS; Kinematic spaceis dS, x dS,
* For the spatial slice, H,, itis dS,
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OPE Blocks




The Operator Proc@uct Expansion

* Consider two quasi-primary pperators ©,(x), O (y) of dimensions A, 4;.
We can expand the product of these two operators using a local basis of
operators:

0, (z) 0, (0) = Ztc.ﬂ A4 =A=2 (1 4 by 2, 4 by 24048,,, + ,..) Ok (0)
k - J

(

Dynamical Parameter Confarmal Kinematics

* Let us introduce a more compact notation for this expansion

O; (x) 05 (y) = |z ~ y| EiEa) Xf',,; B (z,y)
[

Page 23/66
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OPE Blocks as Kinematic Fields

* The OPE block carries coordinates of two points (x, y), so we might naturally
identify it with a field living in our kinematic space.
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OPE Blocks as Kinematic Fields

* The OPE block carries coordinates of two points (x, y), so we might naturally
identify it with a field living in our kinematic space.

Consider a scalar block (4;,l = 0). Let’s characterize this field:
1) What type of field is an OPE block on KS?

. . dx'H
* Consider a conformal transformation x = x’ and Q(x’) = det(aJ;v )
Then

B! («',y)

Q(2') ) (Bi=4j)/2

5 0.0) = (g
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OPE Blocks as Kinematic Fields

* The OPE block carries coordinates of two points (x, y), so we might naturally
identify it with a field living in our kinematic space.

Consider a scalar block (4;,l = 0). Let’s characterize this field:
1) What type of field is an OPE block on KS?

. . dx'H
* Consider a conformal transformation x = x’ and Q(x’) = det(afcv )
Then

Q (ZL") ) (A-i-_AJ)/Q

o
Q(y,) Bk ('Lay)

57 (0.0)

* In the simplest case where 4; = A, this transforms as a scalar field under
isometries of KS.

Let’s keep this simplifying assumption for the purposes of this talk: 3, (x,y)
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OPE Blocks as Kinematic Fields

2) What is its equation of motion?

* A quasi-primary operator and its descendants have the same conformal
Casimir so the OPE block satisfies the equation

[LQ, By (z, y)] = Co, Bk (z,y)
Co,=—AA—-d)—0({+d-2)
* The OPE block transforms in a bi-local representation of the conformal
group, so the Casimir is represented

Ll = (Lo +Ly)° = 2[0 (=0} +0]) + & (07 + ;)]

é) Ry —Zx . zy"'z:rr

2 2
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OPE Blocks as Kinematic Fields

2) What is its equation of motion?

* A quasi-primary operator and its descendants have the same conformal
Casimir so the OPE block satisfies the equation

[Lza By, (.’13’, y)] = CO;,,BA: (.’L’, y)
Co,=—AA—-d)—0({+d-2)
* The OPE block transforms in a bi-local representation of the conformal
group, so the Casimir is represented

(= Zv—2z o ZytZe

2 2

ﬁ%B) = 2 [Oas, + Uas, |
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OPE Blocks as Kinematic Fields

4) Does this boundary-value problem give a well-posed definition of the
field?

* The dS; x dS, equation of njotion has two time directions
* The equation of motion is a ultra-hyperbolic equation
* This ultra-hyperbolic BVP is N®T well-posed,

3 f A D L rm ' t
But we al u;fmhfjr' ane tning

* The conformal group in 2D factorizes and there are two quadratic Casimirs

Pirsa: 16040089
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Smeared OPE Operators

* We could now solve for a representation of the OPE block using the de
Sitter dynamics.

* We can also find the result i a more instantly transparent way:
* The OPE block expansion Is injterms of local operatars at a point

Bj.(z,0) = i;r:lAL (L4 by 29, + bya'a"9,0, + ...) Oy (0)
* Analogous to how we Taylor expand an operator

O(z) = (14219, +...)O(0)

* There [s a choice of basis {O)(x)),. er (4" (D)),

* Can we write the OPE block in this other basis using some smearing function?

Page 30/66
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Smeared OPE Operators

* To choose the integration region, we match the boundary conditions:

lim By (x,0) = 24Oy (0)

x—0

”®

0'<>x ) o

AN
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summary

* We have established that the OPE block B, (x, y) behaves like a scalar field on
the kinematic space of pairs of spacelike points.
1. EOM
2. Constraint
3. Boundary conditions
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summary

* We have established that the OPE block B, (x, y) behaves like a scalar field on
the kinematic space of pairs of spacelike points.
1. EOM
2. Constraint
3. Boundary conditions

We also wrote down a representation of this operator as a smeared operator
over the causal diamond formed by the points
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summary

* We have established that the OPE block B, (x, y) behaves like a scalar field on
the kinematic space of pairs of spacelike points.
1. EOM
2. Constraint
3. Boundary conditions

We also wrote down a representation of this operator as a smeared operator
over the causal diamond formed by the points

The OPE block is just what we have been looking for: a suitably invariant,
nonlocal building block in the CFT.
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X-Ray Transform

* The analogue of this problem for functions in Hyperbolic space is a well-
studied field of integral geometry: it’s the X-ray transform
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X-Ray Transform
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X-Ray Transform

* The X-ray transform has nice properties under isometries of the geometry:

K f(x)

HasxasRf = —RUaas, f

“Intertwining Operators”
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X-Ray Transform

* dS, X dS, is a 4-dimensional space AdS; is 3-dimensional.
* KSis a redundant description of the real geometry and functions that live on it
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X-Ray Transform

* dS, X dS, is a 4-dimensional space AdS; is 3-dimensional.
* KSis a redundant description of the real geometry and functions that live on it

* Many more functions f we can specify on KS than are are consistent images Rf of
the transform

What constraints do the ray transforms obey?

* John’s equation:

(Oas —Og5) 3 =0 <= g=Rf
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X-Ray Transform

* dS, X dS, is a 4-dimensional space AdS; is 3-dimensional.
* KSis a redundant description of the real geometry and functions that live on it

* Many more functions f we can specify on KS than are are consistent images Rf of
the transform

What constraints do the ray transforms obey?

)

* John’s equation:

-

(Oas —Og5) 3 =0 <= g=Rf

X
|
X

(

* Intuitive meaning: we can determine function
from flat slicing geodesics. Boosted geodesics are a
redundant description.

(@
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Geodesic Operators
* We can apply the same transform to a ‘local’ bulk operator ¢:

~

B0 = [ dsola)
Jy(a,b,)
* Let’s assume ¢ is a bulk operator such that (Caqs — mz) d(x) =0

Intertwinementof the EOM: (Has + Ugs + m2)gb('y) =0

~

John’s equation: (Oas — Ogg)p(y) =0

* Let’s also assume that ¢ is dual to the bulk field @ (¢ (x,2) ~ 22O, (x) ).
Then

lim (f)(a, 0.) ~ a0y (6.)

a—0
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Gauge-Invariant Kinematic Dictionary

* We have now established that the geodesic operator ¢p, and the OPE block
B;CJ (x,vy) both share:
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Gauge-Invariant Kinematic Dictionary

* We have now established that the geodesic operator ¢p, and the OPE block
B;CJ (x,vy) both share:

1. The same EOM (D,;_c; -+ D,Lg + 'm."e)(;j(’)*) = () [[:lds._, + Ogs, + mﬂ By (x,y) =0

2. The same constraint (Das — Das)o(7) = 0 [Bas, = Clasa] By (,y) = 0

Pirsa: 16040089 Page 43/66



Gauge-Invariant Kinematic Dictionary

* We have now established that the geodesic operator ¢p, and the OPE block
B;j (x,vy) both share:

1. The same EOM (Qas + Ogs +m*)d(7) = 0 [Oas, + Oas, + m?) B (x,y) = 0
2. The same constraint (Has — Ugg)e(y) =0 [Oas, — Oas, ] Bi (,y) =0
' | A v ~ A (.. i ~ 2Bk O,
3. The same boundary conditions ai ¢l fc) ~ &= O(fe) 215 B 0 ~ O (O)
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Extensions




Higher Dimensions

Most of what I've said extends to higher dimensions.

1. There is a good kinematic metric on pairs of points:

Lo (z —y)
)2 _ v\ ¢ P T2 RN
ds K, = 5—dxdy

lz -y

2. Geodesics and OPE blocks are still both described as scalar fields in K.

3. But, we no longer have a nice smearing function because there is no
compact conformally invariant integration region.

Pirsa: 16040089
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Higher Dimensions

* In higher dimensions, there is a difference between specifying two
spacelike points and two timelike points:

b
& A
x Y

[

Y

* The kinematic space of pairs of timelike separated points is now the
kinematic space of bulk minimal surfaces for the boundary region.
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Higher Dimensions

* In higher dimensions, there is a difference between specifying two
spacelike points and two timelike points:

[ ] [ ]
T Y
@
Yy
* The kinematic space of pairs of timelike separated points is now the
kinematic space of bulk minimal surfaces for the boundary region.

* For d-dim Hyperbolic space, this kinematic space is d-dim de Sitter [de Boer, Heller, Myers, Neiman]

* Instead of X-ray transform, have Radon transform over minimal surface of
bulk operator: bulk surface operators

* We can study to contribution of operators of fixed Casimir to the expansion
of loop/surface operators: surface operator OPE.
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Operators with Spin

* Our smearing functions can equally be written for operators with spin:

(x —y) 22 By (x,y) = / 2 (On, (2)0ny (y)OR " (2)) Op..v, 4 (2)

* We can correspondingly write X-Ray transforms of bulk tensor fields

T 0] Vh b .
T(a,0,) :/ dsTH kg, .12,
v(ex,0.)
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Stress Tensor OPE
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Stress Tensor OPE

* Let’s consider the smearing function for the stress tensor T(z), T(Z7) :

B’l' (.’1"[. ;172) — 6 / (&2 - .4,) (A’f - ~I)T (3)

Z9 — 2

Bip(xy,a9) = 6 /_:2 (22 — 2) (3_ 31),1—«(:)
* Adding the two we find:

BT()() = —127 / dx (IBQ — :L‘) (x — ajl)TIUO (:E)

T L2 — I
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Stress Tensor OPE

* Let’s consider the smearing function for the stress tensor T(z), T(Z7) :

B’l' (.’171. :172) — 6 / (&2 - ~'r) (A’f - ~I)T (:)

B’[‘ (-7»'[.-'1,'2) = 6 / : (32 - :) (3 - 3I)T(z)

Jz 2 — 2
* Adding the two we find: A

BT()() = —127 / dx (:1:2 — :L‘) (x — :Bl)TOO (.’E)

T T2 — I N 4

* This may look familiar, because:

1
Hmod - _EBTUU

* So the modular Hamiltonian is just an OPE block (and is a field on KS).
[de Boer, Myers, Heller, Neiman
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Einstein’s Equations

* Since H,,04 is @ kinematic operator, we know it obeys a de Sitter wave
equation:

(D}C + 2d)I_Ilno(l =0

* The geodesic operator that is dual to the perturbation in the modular
Hamiltonian is just the perturbation in the entanglement entropy

05 = 5<Hmod> 05 = /-5_(};“,&:”:&”
v

* Using intertwinement of the Laplacian, we can find

(Ox + 2d)0H = — /(DA(IS —2d)og, 'z’ =0

i |
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| |
Geodesic Witten Diagrams

* The 4-point function of a CFT has an expansion in terms of conformal
partial waves |

|

Pirsa: 16040089 Page 54/66



|
Geodesic Witten Diagrams

* The 4-point function of a CFT has an expansion in terms of conformal
partial waves

(0,0,0,0,) X"!:i('a Wi ()
[

Wi s ()
* This is simplest when A; = A, ,A; = A, and we find

p (0|8 ( B (1 ()
Wiiizsa (z3) = S0k (w1,:2a) B (2, 24)
JI.“ 1 ‘.‘-I.
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Local Bulk Operators

So far:
Geodesic operators give non-local, diff-invariant probes of bulk physics.

Nevertheless:
Would still like to understand the emergence of (approximate) local effective

field theory in a gravitational background.
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* Of course, we don’t have just one projection of the bulk data—we have the
projections in all ‘angles’

* Reconstructing a complete 3D image from all of these projections (geodesic
integrals) is a well-understood problem. It’s what allows this:

Motorized
Table
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Inversion Formulae for the Radon Transform

What data do we need to reconstruct a function in the
bulk geometry?

* There exist inversion formulae for the d-dimensional
Radon/X-ray transform in n-dim Hyperbolic space H™.
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Inversion Formulae for the Radon Transform

What data do we need to reconstruct a function in the
bulk geometry?

* There exist inversion formulae for the d-dimensional
Radon/X-ray transform in n-dim Hyperbolic space H™.

* These formulas generally take the form:

f(?C) - L Qd (A) R*Rf [Helgason]

where R" is dual Radon transform (integral is over the
surfaces that intersect the desired point).
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Inversion Formulae for the Radon Transform

What data do we need to reconstruct a function in the
bulk geometry?

* There exist inversion formulae for the d-dimensional
Radon/X-ray transform in n-dim Hyperbolic space H™.

* These formulas generally take the form:

f(X) - L Qd (A) R*Rf [Helgason]

where R" is dual Radon transform (integral is over the
surfaces that intersect the desired point).

. . 2 . .
* For the geodesic transform in H“, this formula is
singular and inversion requires an integral over all

geodesics: .
1 [ 1 ~
flz) = —— / dp - d (avemge f('y))

7 ) sinhp dp \ gz~)=p
0

Pirsa: 16040089
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Inversion Formulae for the Radon Transform

What data do we need to reconstruct a function in the
bulk geometry?

* There exist inversion formulae for the d-dimensional
Radon/X-ray transform in n-dim Hyperbolic space H™.

* These formulas generally take the form:

f(?C) - L Qd (A) R*Rf [Helgason]

where R" is dual Radon transform (integral is over the
surfaces that intersect the desired point).

. . 2 . .
* For the geodesic transform in H“, this formula is
singular and inversion requires an integral over all

geodesics: .
1 [ d ;
flz) = —— / dp - d (avemge f('y))

7 ) sinhp dp \ gz~)=p
0

Pirsa: 16040089
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* We integrate over the parameters (a, 8.), while leaving the boundary
integrals in B(«, 6..) unintegrated.
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* We integrate over the parameters (a, 8.), while leaving the boundary
integrals in B(«, 0..) unintegrated.

* This gives the bulk operator as an integral over the spacelike separated boundary
region

% 2m
k -
d(p=0) = /dt/dBKA(t) Oa(t.0) Ka(t) = ——(cost)* *logcost

-3 0

* We have recovered the well-known HKLL global smearing function
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* Our domain of integration is over % of the oriented KS.

e

\-h___________,/

* We made a choice of which orientation/causal diamond to choose for
each geodesic.

* We have the apparent freedom to swap one causal diamond for
another...
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\ . v
* An interesting choice is to choose all of the diamonds that don’t contain
a fixed boundary point: |

* This Is now the HKLL smearing function for the Poincare patch

* There is an interesting relation between the different representations
bulk operators and a choice of OPE channel in the b i

oundary theory

Page 65/66
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Interactions

* The construction of local bulk operators can be extended to include
interactions:

o, z) = /dd YK (2, 2| ) + —Z(JCFT /dd.’I:’K-n,(.’I:,Zl.’IJ’)On(.’I:,)

IK bat,Lifschytz,Lowe; Heemskerk,Marolf,Polshinski,JS]

* The explicit corrections were computed up to O(1/N) for specific conformal
dimensions (and conjectured more generally).

* We are able to compute these to higher order (much more easily) and for
arbitrary conformal dimension, confirming the conjectured form at O(1/N).

* The simplification comes by not solving for the local operator, but solving
for the geodesic operator:

ba(1) = Ba) + 7 ST
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