Title: Categorification of shifted symplectic geometry using perverse sheaves

Date: Apr 18, 2016 02:00 PM

URL: http://pirsa.org/16040072

Abstract: Let (X,w) be a -1-shifted symplectic derived scheme or stack over C in the sense of Pantev-Toen-Vaquie-Vezzosi with an "orientation" (square root of det L_X). We explain how to construct a perverse sheaf P on the classical truncation $X=t_0(X)$, over a base ring A. The hypercohomology $H^*(P)$ is regarded as a categorification of X.

Now suppose $i : L \rightarrow X$ is a Lagrangian in (X,w) in the sense of PTVV, with a "relative orientation". We outline a programme (work in progress) to construct a natural morphism

 $mu : A_L[vdim L] \longrightarrow i^!(P)$

of constructible complexes on L=t_0(L). If i is proper this is equivalent to a hypercohomology in H^{-vdim L}(P). These natural morphisms / hypercohomology classes \mu satisfy various identities under products, composition of Lagrangian correspondences, etc.

This programme will have interesting applications. In particular:

(a) Take (X,w) to be the derived moduli stack of coherent sheaves on a Calabi-Yau 3-fold Y, so that the orientation is essentially "orientation data" in the sense of Kontsevich-Soibelman 2008. Then we regard H*(P) as being the Cohomological Hall Algebra of Y (cf Kontsevich and Soibelman 2010 for quivers). Consider

i: Exact --> (X,w) x (X,-w) x (X,w)

the moduli stack of exact sequences of coherent sheaves on Y, with projections to first, second and third factors. This is a Lagrangian in -1-shifted symplectic. Suppose we have a relative orientation. Then the hypercohomology element mu associated to Exact should give the COHA multiplication on H*(P), and identities on mu should imply associativity of multiplication.

(b) Let (S,w) be a classical symplectic C-scheme, or complex symplectic manifold, of dimension 2n, and L --> S, M --> S be algebraic / complex Lagrangians (or derived Lagrangians in the PTVV sense), proper over S. Suppose we are given "orientations" on L,M, i.e. square roots of the canonical bundles K_L,K_M. Then the derived intersection $X = L \times S M$ is -1-shifted symplectic and oriented, so we get a perverse sheaf P on X. We regard the shifted hypercohomology H^{*-n}(P) as being a version of the "Lagrangian Floer cohomology" HF*(L,M), and the morphisms L --> M in a "Fukaya category" of (S,w).

If L,M,N are oriented Lagrangians in (S,w), then the triple intersection L x_S M x_S N is Lagrangian in the triple product (L x_S M) x (M x_S N) x (N x_S L). The associated hypercohomology element should correspond to the product HF*(L,M) x HF*(M,N) --> HF*(L,N) which is composition of morphisms in the "Fukaya category". Using these techniques we intend to define "Fukaya categories" of algebraic symplectic / complex symplectic manifolds, with many nice properties.

Different parts of this programme are joint work with subsets of Lino Amorim, Oren Ben-Bassat, Chris Brav, Vittoria Bussi, Delphine Dupont, Pavel Safronov, and Balazs Szendroi.

Plan of talk:

Shifted symplectic geometry

2 A Darboux theorem for shifted symplectic schemes

3 Categorification using perverse sheaves: objects

Categorification using perverse sheaves: morphisms

2 / 25

Dominic Joyce, Oxford University

Categorification of PTVV using perverse sheaves

イロト イヨト イヨト イヨト

ъ.

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

PTVV's shifted symplectic geometry

Pantev, Toën, Vaguié and Vezzosi (arXiv:1111.3209) defined a version of symplectic geometry in the derived world. Let **X** be a derived \mathbb{K} -scheme or \mathbb{K} -stack. The cotangent complex $\mathbb{L}_{\mathbf{X}}$ has exterior powers $\Lambda^{p}\mathbb{L}_{\mathbf{X}}$. The *de Rham differential* $d_{dR} : \Lambda^{p} \mathbb{L}_{\mathbf{X}} \to \Lambda^{p+1} \mathbb{L}_{\mathbf{X}}$ is a morphism of complexes. Each $\Lambda^{p} \mathbb{L}_{\mathbf{X}}$ is a complex, so has an internal differential $d: (\Lambda^{p}\mathbb{L}_{\mathbf{X}})^{k} \to (\Lambda^{p}\mathbb{L}_{\mathbf{X}})^{k+1}$. We have $\mathrm{d}^2 = \mathrm{d}^2_{dR} = \mathrm{d} \circ \mathrm{d}_{dR} + \mathrm{d}_{dR} \circ \mathrm{d} = 0.$ A *p*-form of degree k on **X** for $k \in \mathbb{Z}$ is an element $[\omega^0]$ of $H^k(\Lambda^p \mathbb{L}_{\mathbf{X}}, \mathrm{d})$. A closed p-form of degree k on **X** is an element $[(\omega^0, \omega^1, \ldots)] \in H^k(\bigoplus_{i=0}^{\infty} \Lambda^{p+i} \mathbb{L}_{\mathbf{X}}[i], \mathrm{d} + \mathrm{d}_{dR}).$ There is a projection $\pi : [(\omega^0, \omega^1, \ldots)] \mapsto [\omega^0]$ from closed *p*-forms $[(\omega^0, \omega^1, \ldots)]$ of degree k to p-forms $[\omega^0]$ of degree k. . 500

Dominic Joyce, Oxford University Categorification of

Categorification of PTVV using perverse sheaves

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Nondegenerate 2-forms and symplectic structures

Let $[\omega^0]$ be a 2-form of degree k on \mathbf{X} . Then $[\omega^0]$ induces a morphism $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$, where $\mathbb{T}_{\mathbf{X}} = \mathbb{L}_{\mathbf{X}}^{\vee}$ is the tangent complex of \mathbf{X} . We call $[\omega^0]$ nondegenerate if $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ is a quasi-isomorphism.

If **X** is a derived scheme then the complex $\mathbb{L}_{\mathbf{X}}$ lives in degrees $(-\infty, 0]$ and $\mathbb{T}_{\mathbf{X}}$ in degrees $[0, \infty)$. So $\omega^0 : \mathbb{T}_{\mathbf{X}} \to \mathbb{L}_{\mathbf{X}}[k]$ can be a quasi-isomorphism only if $k \leq 0$, and then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0] and $\mathbb{T}_{\mathbf{X}}$ in degrees [0, -k]. If k = 0 then **X** is a smooth classical \mathbb{K} -scheme, and if k = -1 then **X** is quasi-smooth.

5 / 25

Dominic Joyce, Oxford University

Categorification of PTVV using perverse sheaves

・日・ ・ ヨ ・ ・ ヨ ・

3

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Calabi–Yau moduli schemes and moduli stacks

PTVV prove that if Y is a Calabi–Yau *m*-fold over \mathbb{K} and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a (2 - m)-shifted symplectic structure ω . This suggests applications — lots of interesting geometry concerns Calabi–Yau moduli schemes, e.g. Donaldson–Thomas theory.

6 / 25

Dominic Joyce, Oxford University

Categorification of PTVV using perverse sheaves

イロン イロン イヨン イヨン

-

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Calabi–Yau moduli schemes and moduli stacks

PTVV prove that if Y is a Calabi-Yau *m*-fold over K and \mathcal{M} is a derived moduli scheme or stack of (complexes of) coherent sheaves on Y, then \mathcal{M} has a (2 - m)-shifted symplectic structure ω . This suggests applications — lots of interesting geometry concerns Calabi-Yau moduli schemes, e.g. Donaldson-Thomas theory. We can understand the associated nondegenerate 2-form $[\omega^0]$ in terms of *Serre duality*. At a point $[E] \in \mathcal{M}$, we have $h^i(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{i-1}(E, E)$ and $h^i(\mathbb{L}_{\mathcal{M}})|_{[E]} \cong \operatorname{Ext}^{1-i}(E, E)^*$. The Calabi-Yau condition gives $\operatorname{Ext}^i(E, E) \cong \operatorname{Ext}^{m-i}(E, E)^*$, which corresponds to $h^{i+1}(\mathbb{T}_{\mathcal{M}})|_{[E]} \cong h^{i+1}(\mathbb{L}_{\mathcal{M}}[2-m])|_{[E]}$. This is the cohomology at [E] of the quasi-isomorphism $\omega^0: \mathbb{T}_{\mathcal{M}} \to \mathbb{L}_{\mathcal{M}}[2-m]$.

6 / 25

Dominic Joyce, Oxford University

Categorification of PTVV using perverse sheaves

イロト イヨト イヨト イヨト

3

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Lagrangians and Lagrangian intersections

Let (\mathbf{X}, ω) be a *k*-shifted symplectic derived scheme or stack. Then Pantev et al. define a notion of *Lagrangian* \mathbf{L} in (\mathbf{X}, ω) , which is a morphism $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ of derived schemes or stacks together with a homotopy $\mathbf{i}^*(\omega) \sim 0$ satisfying a nondegeneracy condition, implying that $\mathbb{T}_{\mathbf{L}} \simeq \mathbb{L}_{\mathbf{L}/\mathbf{X}}[k-1]$. If \mathbf{L} , \mathbf{M} are Lagrangians in (\mathbf{X}, ω) , then the fibre product $\mathbf{L} \times_{\mathbf{X}} \mathbf{M}$ has a natural (k-1)-shifted symplectic structure. If (S, ω) is a classical smooth symplectic scheme, then it is a 0-shifted symplectic derived scheme in the sense of PTVV, and if $L, M \subset S$ are classical smooth Lagrangian subschemes, then they are Lagrangians in the sense of PTVV. Therefore the (derived) Lagrangian intersection $L \cap M = L \times_S M$ is a -1-shifted symplectic derived scheme.

7 / 25

Dominic Joyce, Oxford University Categorification

y Categorification of PTVV using perverse sheaves

イロ・ イヨ・ イヨ・ イヨ・

2. A Darboux theorem for shifted symplectic schemes

Theorem 1 (Brav, Bussi and Joyce arXiv:1305.6302)

Let (\mathbf{X}, ω) be a k-shifted symplectic derived \mathbb{K} -scheme for k < 0. If $k \not\equiv 2 \mod 4$, then each $x \in \mathbf{X}$ admits a Zariski open neighbourhood $\mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A^{\bullet}$ for $A^{\bullet} = (A^*, d)$ an explicit cdga generated by graded variables x_j^{-i}, y_j^{k+i} for $0 \leq i \leq -k/2$, and $\omega|_{\mathbf{Y}} = [(\omega^0, 0, 0, \ldots)]$ where x_j^l, y_j^l have degree l, and $\omega^0 = \sum_{i=0}^{\lfloor -k/2 \rfloor} \sum_{i=1}^{m_i} d_{dR} y_i^{k+i} d_{dR} x_i^{-i}$.

Also the differential d in A^{\bullet} is given by Poisson bracket with a Hamiltonian H in A of degree k + 1.

If $k \equiv 2 \mod 4$, we have two statements, one étale local with ω^0 standard, and one Zariski local with the components of ω^0 in the degree k/2 variables depending on some invertible functions.

Ben-Bassat-Brav-Bussi-Joyce extend this to derived Artin K-stacks.

8 / 25

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Sketch of the proof of Theorem 1

Suppose (\mathbf{X}, ω) is a *k*-shifted symplectic derived \mathbb{K} -scheme for k < 0, and $x \in \mathbf{X}$. Then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]. We first show that we can build Zariski open $x \in \mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A^{\bullet}$, for $A^{\bullet} = (\bigoplus_{i \leq 0} A^{i}, d)$ a cdga over \mathbb{K} with A^{0} a smooth \mathbb{K} -algebra, and such that A^{*} is freely generated over A^{0} by graded variables x_{j}^{-i}, y_{j}^{k+i} in degrees $-1, -2, \ldots, k$. We take dim A^{0} and the number of x_{j}^{-i}, y_{j}^{k+i} to be minimal at x.

9 / 25

Dominic Joyce, Oxford University

Categorification of PTVV using perverse sheaves

・日・ ・ ヨ・ ・ ヨ・

3

うくで

Sketch of the proof of Theorem 1

Suppose (\mathbf{X}, ω) is a *k*-shifted symplectic derived K-scheme for k < 0, and $x \in \mathbf{X}$. Then $\mathbb{L}_{\mathbf{X}}$ lives in degrees [k, 0]. We first show that we can build Zariski open $x \in \mathbf{Y} \subseteq \mathbf{X}$ with $\mathbf{Y} \simeq \operatorname{Spec} A^{\bullet}$, for $A^{\bullet} = (\bigoplus_{i \leq 0} A^{i}, \mathrm{d})$ a cdga over K with A^{0} a smooth K-algebra, and such that A^{*} is freely generated over A^{0} by graded variables x_{j}^{-i}, y_{j}^{k+i} in degrees $-1, -2, \ldots, k$. We take dim A^{0} and the number of x_{j}^{-i}, y_{j}^{k+i} to be minimal at x. Using theorems about periodic cyclic cohomology, we show that on $Y \simeq \operatorname{Spec} A^{\bullet}$ we can write $\omega|_{Y} = [(\omega^{0}, 0, 0, \ldots)]$, for ω^{0} a 2-form of degree k with $d\omega^{0} = d_{dR}\omega^{0} = 0$. Minimality at x implies ω^{0} is strictly nondegenerate near x, so we can change variables to write $\omega^{0} = \sum_{i,j} d_{dR} y_{j}^{k+i} d_{dR} x_{j}^{-i}$. Finally, we show d in A^{\bullet} is a symplectic vector field, which integrates to a Hamiltonian H.

9 / 25

Dominic Joyce, Oxford University Categorification

ty Categorification of PTVV using perverse sheaves

э.

The case of -1-shifted symplectic derived schemes

When k = -1 the Hamiltonian H in Theorem 1 has degree 0. Then Theorem 1 reduces to:

Corollary

Suppose (\mathbf{X}, ω) is a -1-shifted symplectic derived \mathbb{K} -scheme. Then (\mathbf{X}, ω) is Zariski locally equivalent to a derived critical locus $\mathbf{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth classical \mathbb{K} -scheme and $H : U \to \mathbb{A}^1$ a regular function. Hence, the underlying classical \mathbb{K} -scheme $X = t_0(\mathbf{X})$ is Zariski locally isomorphic to a classical critical locus $\mathrm{Crit}(H : U \to \mathbb{A}^1)$.

This implies that classical Calabi–Yau 3-fold moduli schemes are, Zariski locally, critical loci of regular functions on smooth schemes.

10 / 25

Dominic Joyce, Oxford University

Categorification of PTVV using perverse sheaves

ヘロト 人間 とくほ とくほ とう

э.

Sac

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Definition (Joyce arXiv:1304.4508)

An (algebraic) d-critical locus (X, s) is a classical K-scheme X and a global section $s \in H^0(\mathcal{S}^0_X)$ such that X may be covered by Zariski open $R \subseteq X$ with an isomorphism $i: R \to \operatorname{Crit}(f: U \to \mathbb{A}^1)$ identifying $s|_R$ with $f + I^2_{R,U}$, for f a regular function on a smooth K-scheme U.

13 / 25

Dominic Joyce, Oxford University Catego

Categorification of PTVV using perverse sheaves

イロン イロン イヨン イヨン

.

SAC

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

3. Categorification using perverse sheaves: objects

Theorem 3 (Brav, Bussi, Dupont, Joyce, Szendrői arXiv:1211.3259)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme. Then the 'canonical bundle' det $(\mathbb{L}_{\mathbf{X}})$ is a line bundle over the classical scheme $X = t_0(\mathbf{X})$. Suppose we are given an **orientation** of (\mathbf{X}, ω) , i.e. a square root line bundle det $(\mathbb{L}_{\mathbf{X}})^{1/2}$. Then we can construct a canonical perverse sheaf $P^{\bullet}_{\mathbf{X},\omega}$ on X, such that if (\mathbf{X}, ω) is Zariski locally modelled on $\mathbf{Crit}(f : U \to \mathbb{A}^1)$, then $P^{\bullet}_{\mathbf{X},\omega}$ is locally modelled on the perverse sheaf of vanishing cycles $\mathcal{PV}^{\bullet}_{U,f}$ of (U, f). Similarly, we can construct a natural \mathscr{D} -module $D^{\bullet}_{\mathbf{X},\omega}$ on X, and when $\mathbb{K} = \mathbb{C}$ a natural mixed Hodge module $M^{\bullet}_{\mathbf{X},\omega}$ on X.

In fact we actually construct the perverse sheaf on the oriented d-critical locus (X, s) associated to (X, ω) in Theorem 2. We also define perverse sheaves on oriented complex analytic d-critical loci.

14 / 25

Dominic Joyce, Oxford University Cate

ty Categorification of PTVV using perverse sheaves

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Categorifying Calabi–Yau 3-fold moduli spaces

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root det $(\mathcal{E}^{\bullet})^{1/2}$ for det (\mathcal{E}^{\bullet}) (i.e. orientation data, K–S). Then we have a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

16 / 25

Dominic Joyce, Oxford University

Categorification of PTVV using perverse sheaves

イロン イロン イヨン イヨン

3

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Categorifying Calabi–Yau 3-fold moduli spaces

Corollary

Let Y be a Calabi–Yau 3-fold over \mathbb{K} and \mathcal{M} a classical moduli \mathbb{K} -scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$ (i.e. orientation data, K–S). Then we have a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} .

The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a finite-dimensional graded vector space. The pointwise Euler characteristic $\chi(P^{\bullet}_{\mathcal{M},s})$ is the Behrend function $\nu_{\mathcal{M}}$ of \mathcal{M} . Thus

 $\sum_{i\in\mathbb{Z}}(-1)^i\dim\mathbb{H}^i(P^{ullet}_{\mathcal{M},s})=\chi(\mathcal{M},\nu_{\mathcal{M}}).$

Now by Behrend 2005, the Donaldson–Thomas invariant of \mathcal{M} is $DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}})$. So, $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a graded vector space with dimension $DT(\mathcal{M})$, that is, a *categorification* of $DT(\mathcal{M})$.

Dominic Joyce, Oxford University Categorification

ity Categorification of PTVV using perverse sheaves

SQA

Categorification using preverse sheaves: objects Categorifying Calabi-Yau 3-fold moduli spaces Corollary Let Y be a Calabi-Yau 3-fold over K and M a classical moduli K-scheme of coherent sheaves, or complexes of coherent sheaves, on Y, with (symmetric) obstruction theory $\phi : \mathcal{E}^{\bullet} \to \mathbb{L}_{\mathcal{M}}$. Suppose we are given a square root $\det(\mathcal{E}^{\bullet})^{1/2}$ for $\det(\mathcal{E}^{\bullet})$ (i.e. orientation data, K–S). Then we have a natural perverse sheaf $P^{\bullet}_{\mathcal{M},s}$ on \mathcal{M} . The hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a finite-dimensional graded vector space. The pointwise Euler characteristic $\chi(P^{\bullet}_{\mathcal{M},s})$ is the Behrend function $\nu_{\mathcal{M}}$ of \mathcal{M} . Thus $\sum_{i\in\mathbb{Z}}(-1)^{i}\dim\mathbb{H}^{i}(P^{\bullet}_{\mathcal{M},s})=\chi(\mathcal{M},\nu_{\mathcal{M}}).$ Now by Behrend 2005, the Donaldson–Thomas invariant of ${\cal M}$ is $DT(\mathcal{M}) = \chi(\mathcal{M}, \nu_{\mathcal{M}})$. So, $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$ is a graded vector space with dimension $DT(\mathcal{M})$, that is, a categorification of $DT(\mathcal{M})$. 16/25 Dominic Joyce, Oxford University Categorification of PTVV using perve

Categorifying Lagrangian intersections

Categorification using purverse sheaves: objects

Corollary

17/25

Let (S, ω) be a classical smooth symplectic \mathbb{K} -scheme of dimension 2n, and $L, M \subseteq S$ be smooth algebraic Lagrangians, with square roots $K_L^{1/2}, K_M^{1/2}$ of their canonical bundles. Then we have a natural perverse sheaf $P_{L,M}^{\bullet}$ on $X = L \cap M$.

We also prove an analogue for complex Lagrangians in holomorphic symplectic manifolds, using complex analytic d-critical loci. This is related to Kashiwara and Schapira 2008, and Behrend and Fantechi 2009. We think of the hypercohomology $\mathbb{H}^*(P_{L,M}^{\bullet})$ as being morally related to the (undefined) Lagrangian Floer cohomology $HF^*(L, M)$ by $\mathbb{H}^i(P_{L,M}^{\bullet}) \approx HF^{i+n}(L, M)$. We are working on defining 'Fukaya categories' for algebraic/complex symplectic manifolds using these ideas.

Dominic Joyce, Oxford University Categorification of PTVV using perverse

Definition

Categorification using perverse sheaves: morphisms

4. Categorification using perverse sheaves: morphisms

We have seen the oriented -1-shifted symplectic derived \mathbb{K} -schemes/stacks (\mathbf{X}, ω) carry perverse sheaves $P^{\bullet}_{\mathbf{X}, \omega}$. We also expect that proper, oriented Lagrangians $i: L \rightarrow X$ should have associated hypercohomology elements $\mu_{\mathsf{L}} \in \mathbb{H}^*(P^{ullet}_{\mathsf{X},\omega})$ with interesting properties, which can be interpreted as the morphisms in a categorification of -1-shifted symplectic geometry.

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived scheme, and $i:L \to X$ a Lagrangian. Choose an orientation $\text{det}(\mathbb{L}_X)^{1/2}$ for (\mathbf{X}, ω) . The Lagrangian structure induces a natural isomorphism $\alpha: \mathcal{O}_L \xrightarrow{\cong} i^*(\det(\mathbb{L}_{\mathbf{X}}))$. An orientation for **L** is an isomorphism $\beta: \mathcal{O}_L \xrightarrow{\cong} i^* (\det(\mathbb{L}_{\mathsf{X}})^{1/2}) \text{ with } \beta^2 = \alpha.$

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheave

Let (\mathbf{X}, ω) be a k-shifted symplectic derived K-scheme for k < 0, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ a Lagrangian. Then Theorem 1 shows that \mathbf{X}, ω can be put in an explicit local 'Darboux form' (Spec A^{\bullet}, ω_A). Joyce and Safronov prove a 'Lagrangian Neighbourhood Theorem' saying that \mathbf{L}, \mathbf{i} and the homotopy $h : \mathbf{i}^*(\omega) \sim 0$ can also be put in an explicit local form relative to A^{\bullet}, ω_A . When k = -1 this yields:

Theorem 4 (Joyce and Safronov arXiv:1506.04024)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ a Lagrangian, and $y \in \mathbf{L}$ with $\mathbf{i}(y) = x \in \mathbf{X}$. Theorem 1 implies that (\mathbf{X}, ω) is equivalent near x to $\mathbf{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth, affine \mathbb{K} -scheme. Then $\mathbf{L}, \mathbf{i}, h$ near y have an explicit local model depending on a smooth, affine \mathbb{K} -scheme V, a trivial vector bundle $E \to V$, a nondegenerate quadratic form Q on E, a section $s \in H^0(E)$, and a smooth morphism $\phi : V \to U$ with $Q(s, s) = \phi^*(H)$, where $t_0(\mathbf{L}) \cong s^{-1}(0) \subseteq V$ Zariski locally.

19 / 25

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

DAG

A Darboux theorem for shit de symplectic schemes Categorification using priverse sheaves objects Categorification using perverse sheaves: morphisms

10/25

Let (\mathbf{X}, ω) be a *k* shifted symplectic derived K scheme for k < 0, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ a Lagrangian. Then Theorem 1 shows that \mathbf{X}, ω can be put in an explicit local 'Darboux form' (Spec A^{\bullet}, ω_A). Joyce and Safronov prove a 'Lagrangian Neighbourhood Theorem' saying that \mathbf{L}, \mathbf{i} and the homotopy $h : \mathbf{i}^*(\omega) \sim 0$ can also be put in an explicit local form relative to A^{\bullet}, ω_A . When k = -1 this yields:

Theorem 4 (Joyce and Safronov arXiv:1506.04024)

Let (\mathbf{X}, ω) be a -1-shifted symplectic derived \mathbb{K} -scheme, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ a Lagrangian, and $y \in \mathbf{L}$ with $\mathbf{i}(y) = x \in \mathbf{X}$. Theorem 1 implies that (\mathbf{X}, ω) is equivalent near x to $\operatorname{Crit}(H : U \to \mathbb{A}^1)$, for U a smooth, affine \mathbb{K} -scheme. Then \mathbf{L}, \mathbf{i} , h near y have an explicit cal model depending on a smooth, affine \mathbb{K} -scheme V, a trivial vector bundle $E \to V$, a nondegenerate quadratic form Q on E, a set $\mathbf{v} \in H^0(E)$, and a smooth morphism $\phi : V \to U$ with $Q(s, \mathbf{v} \in H^0(\mathbf{L}), \mathbf{v} \in t_0(\mathbf{L}) \cong s^{-1}(0) \subseteq V$ Zariski locally.

Dominic Jovce. Oxford University Categorification of PTVV using perverse sheaves

Categorification using perverse sheaves: morphisms Conjecture A Let (\mathbf{X}, ω) be an riented -1-shifted symplectic derived \mathbb{K} -scheme or $\mathbb{K}\text{-stack, and} \bigoplus L \to X$ an oriented Lagrangian. Then there is a natural morphism in $D_c^b(\mathbf{L})$ $\mu_{\mathsf{L}}: \mathbb{Q}_{\mathsf{L}}[\operatorname{vdim} \mathsf{L}] \longrightarrow i^{!}(P^{\bullet}_{\mathsf{X},\omega}),$ with given local models in the 'Darboux form' presentations for X, ω, L in Theorem 4. Lino Amorim and I have an outline proof of Conjecture A in the scheme case over $\mathbb{K}=\mathbb{C},$ and also of a complex analytic version. In fact Conjecture A is only the first and simplest in a series of conjectures, which really should be written using ∞ -categories, concerning higher coherences of the morphisms μ_L under products, Verdier duality, composition of Lagrangian correspondences, etc. Our methods also allow us to prove these further conjectures. See Amorim and Ben-Bassat arXiv:1601.01536 for more on this. 20/25 Dominic Joyce, Oxford University Categorification of PTVV using perven

A Darboux theorem for shifted symplectic schemes Categorification using perverse sheaves: objects Categorification using perverse sheaves: morphisms

Conjecture A

Let (\mathbf{X}, ω) be an oriented -1-shifted symplectic derived \mathbb{K} -scheme or \mathbb{K} -stack, and $\mathbf{i} : \mathbf{L} \to \mathbf{X}$ an oriented Lagrangian. Then there is a natural morphism in $D_c^b(\mathbf{L})$

$$\mu_{\mathsf{L}}: \mathbb{Q}_{\mathsf{L}}[\operatorname{vdim} \mathsf{L}] \longrightarrow i^{!}(P^{\bullet}_{\mathsf{X},\omega}),$$

with given local models in the 'Darboux form' presentations for X, ω, L in Theorem 4.

Lino Amorim and I have an outline proof of Conjecture A in the scheme case over $\mathbb{K} = \mathbb{C}$, and also of a complex analytic version. In fact Conjecture A is only the first and simplest in a series of conjectures, which really should be written using ∞ -categories, concerning higher coherences of the morphisms μ_{L} under products, Verdier duality, composition of Lagrangian correspondences, etc. Our methods also allow us to prove these further conjectures. See Amorim and Ben-Bassat arXiv:1601.01536 for more on this.

20 / 25

Dominic Joyce, Oxford University Categorification of PTVV using perverse sheaves

Consequences of Conjecture A: perverse COHAs for CY3's

Let Y be a Calabi-Yau 3-fold, and \mathcal{M} the moduli stack of coherent sheaves on Y, so \mathcal{M} is -1-shifted symplectic. Let \mathcal{E} xact be the derived stack of short exact sequences $0 \rightarrow F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow 0$ in $\operatorname{coh}(Y)$, with projections $\pi_1, \pi_2, \pi_3 : \mathcal{E}$ xact $\rightarrow \mathcal{M}$. Ben-Bassat (work in progress) shows $\pi_1 \times \pi_2 \times \pi_3 : \mathcal{E}$ xact $\rightarrow (\mathcal{M}, \omega) \times (\mathcal{M}, -\omega) \times (\mathcal{M}, \omega)$ is Lagrangian. Suppose we have 'orientation data' for Y, i.e. an orientation for (\mathcal{M}, ω) , with a compatibility condition on exact sequences, which is equivalent to an orientation on \mathcal{E} xact. Then as in Theorem 3 we have a perverse sheaf $P^{\bullet}_{\mathcal{M},s}$, with

hypercohomology $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$. Applying Conjecture A to \mathcal{E} xact and using Verdier duality should (?) give an associative multiplication on $\mathbb{H}^*(P^{\bullet}_{\mathcal{M},s})$, making it into a *Cohomological Hall Algebra*, as in Kontsevich–Soibelman arXiv:1006.2706, COHAs for CY3 quivers.

Dominic Joyce, Oxford University Categorificat

y Categorification of PTVV using perverse sheaves

▲目▶ ▲目▶ 目 のへで

A Darboux theorem for shifted symplectic schemes Categorification using priverse sheaves, objects Categorification using perverse sheaves; morphisms

23/25

If L, M, N are Lagrangians in (S, ω) , then $M \cap L, N \cap M, L \cap N$ are -1-shifted symplectic / d-critical loci, and $L \cap M \cap N$ is Lagrangian in the product $(M \cap L) \times (N \cap M) \times (L \cap N)$ (Ben-Bassat arXiv:1309.0596). Applying Conjecture A to $L \cap M \cap N$ and rearranging using Verdier duality $P_{M,L}^{\bullet} \simeq \mathbb{D}(P_{M,L}^{\bullet})$ gives

 $\mu_{L,M,N}: P^{\bullet}_{L,M} \overset{L}{\otimes} P^{\bullet}_{M,N}[n] \longrightarrow P^{\bullet}_{L,N}.$

Taking hypercohomology gives the multiplication $HF^*(L, M) \times HF^*(M, N) \rightarrow HF^*(L, N)$, which is composition of morphisms in the derived Fukaya category $D^b \mathscr{F}(S, \omega)$. Higher coherences for such morphisms $\mu_{L,M,N}$ under composition should give the A_{∞} -structure needed to define a derived 'Fukaya category' $D^b \mathscr{F}(S, \omega)$, which we hope to do.

Dominic Joyce, Oxford University Categorification of PTVV using perverse s

