Title: Spin and evolution in geometric models of matter
Date: Apr 21, 2016 02:30 PM
URL.: http://pirsa.org/16040063

Abstract: <p>In the geometric models of matter, proposed in ajoint paper with Michael Atiyah and Nick Manton, static particles like the electron or
proton are modelled by Riemannian 4-manifolds. In this talk | will explain how the spin degrees of freedom appear in the geometric framework. |
will also discuss a proposal for time evolution in one particular model, namely the Taub-NUT model of the electron.<br>

<br>

In the geometric models of matter, proposed in ajoint paper with Michael Atiyah and Nick Manton, static particles like the electron or proton are
modelled by Riemannian 4-manifolds. In this talk | will explain how the spin degrees of freedom appear in the geometric framework. | will also
discuss a proposal for time evolution in one particular model, namely the Taub-NUT model of the electron.<br>

<br>

</p>
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Length scales and Dirac’s Large Number Hypothesis
Comparison with the Schwarzschild instanton
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Geometric models of particles
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Solitons as particles: Skyrmions

O ©®

1: 0(3) 2:0(2)

5: Dy, 6: D4y 7t Yy 8: Deq

Figure: Skyrmions from B=1 to B=8 (with m, = 0) [R.A. Battye and
P.M. Sutcliffe]
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The deuteron as a quantised Skyrmion

L T PR ) e e T Figure %.a
r DEUTERON DENSITY CONTOURS
z 2.0
1.0
1l 1.0
B 2.0
'] 1.0 :: 1.0 (-]

Pirsa: 16040063 Page 7/38



Pirsa: 16040063

|deas (preliminary)

Inspired by topological solitons like the Skyrme model and
‘holographic dual QCD’ (Sakai and Sugimoto)

Quantum numbers from topology, gauge fields and symmetries
from geometry.

Static geometric models: dualised and generalised KK model

Stable elementary particles modelled by Euclidean 4-manifolds
M with asymptotic fibration by circles
Electric charge= - Chern class of asymptotic circle bundle

Taub-NUT for electron, Euclidean Schwarzschild for neutron,
Taub-Bolt or Atiyah-Hitchin for proton ...

L2-cohomology and U(1) instantons on M play a role

Spin 1/2 from kernel of Dirac operator on M coupled to U(1)
iInstanton

Here: discuss spin and include time in model of electron.
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Taub-NUT geometry
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A geometrical soliton

Kaluza-Klein geometrisation of the Dirac monopole

R* ~ {0} U R* X S8
i e
radial coordinate total space of Hopf bundle
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Self-duality

Taub-NUT metric is of Bianchi IX form
ds? = f2dr? + a20? + b203 + c?03.

Here r is transverse coordinate to SU(2) ~ S® , and

h~'dh = to;, he SU2), [t b]=t.

Self-duality with respect to complex orientation:

2_?(?% = (b-c)?—a° +cycl.,
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Complex vesus angular coordinates

TN family has a= band ¢ = 0 = a = b = 0. With

2y -2
h:( 1 _2). |Z1|2+|Zg|2:1

2o Zq
and
~4e+¥) o be—¥) gog ¥
Zy = e 2\¥ COS =, 2Zp = e2\¥ cos§.
the metric is
ds® = f2dr? + a?(d6? + sin® 0d?) + 202,
where

o3 = cos fdy + di.
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U(2) invariance and spin coordinates
With ¢ as radial coordinate, have

ce[0,A), and a= Ccz.
1-%
Cigar-shaped geodesic submanifolds
2 4 2 | 2.2
ds® = 2 4dc + cdiy*c,
(1 - %)

: , . 1 :
with asymptotic radius 2A and Gauss curvature K = Az at tip.
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U(2) invariance and spin coordinates

TN is naturally By, ¢ C? with global complex coordinates
w=2cze {zeC? |zl <A}
The metric near nut is flat:

ds® ~ |dW1 ‘2 -+ |dW2|2.
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Macroscopic or position coordinates
The Hopf fibration 7 : S® — S?, z+ = zi7z together with
f=—a/r, X=rn=(rsinfcosqy,rsinfsiny,rcosd)

gives the usual isotropic form of the TN metric
ds? = Fd)?'z + c?08.

Solving SD equation introduces macroscopic length scale L as
integration constant. With

L? L r
e VEer e o= han

(..

obtain Gibbons-Hawking form

2
ds? = ((- + é) dx? + L o3

er + L
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Macroscopic or position coordinates

Can define macroscopic coordinates invariantly via Hyperkahler
moment maps

pi = LX;
Have macroscopic identification with C?
R=2VLr, W=RzeC?

which agrees with microscopic coordinates near nut.
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Scaling properties

The metric in limit ¢ = 0 is flat:

ds? = |dW, |2 + |dWa?

=0 >0

o0l

Figure: Taub-NUT from flat space
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Abelian Instantons

For arbitrary p € R and on static Taub-NUT, consider gauge field

ip ¢® ip er
= ——0 = — 03,
2N T pery L8

A

Properties:

» Ais U(2)-invariant
» The curvature

ff-p L r ;
= dA = dr Aoz — 6do A dy
F=dA=3 ((f:r+L)2 SN "“)

is self-dual and hence co-closed
» F generates L?H?(TN) ~ R

Pirsa: 16040063 Page 18/38



Pirsa: 16040063

Zero modes in static case

Dirac operator on Taub-NUT minimally coupled to A
(0 T}
-3, %)

dim kerTJ;,r =0, dim kerT, = %HP” ([lp[] +1)

has

where [x] is integer strictly less than x (Pope).

Explicit form of solutions for fixed total angular momentum j (R Jante,
BJS)

_,l' m

—_j @mZ; .

Z5

V(r,z1,22) =
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Spin 1/2 and microscopic coordinates
For p =2, j = 1/2 doublet as model for spin states:

Non-square integrable ‘vortex’ form is linear function of the
microscopic coordinates

3_% wy + a% Wo

0
\U%(f.21.22)— 0
0

compare Skyrmion spin states!

1y A—— e
P
0.8} //
//

0.6}

0.4}

02}
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The limite =0
In limit
e—0, ep—p#0,
the curvature is essentially the Kahler form on C?:

~

F:4—FZE(dW1/\dW1+dW2f\W2).

Constant magnetic field!
For fixed j and m, the non-vanishing spinor component become

. . w2
Wi—mWitm e=P Y
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The limite =0
In limit
e —~0, f'[)—),b#o.
the curvature is essentially the Kahler form on C?:

~

F:%(dw1/\dW1+dW2f\W2).

Constant magnetic field!
For fixed j and m, the non-vanishing spinor component become

. . w2
WM Wit e=P e

Landau ground state!

_P p

/ /

W, W,

Figure: Landau levels in constant magnetic field
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Full spectrum of Dirac operator on Taub-NUT and Euclidean Schwarzschild
coupled to self-dual Maxwell field

(with R Jante)
Taub-NUT spectrum is exactly computable via dynamical symmetries

» For fixed 'U(1) charge’ s satisfying
2 _ P
$* <7

there are infinitely many Coulomb-like bound states with binding
energies

2n 2
E —n2+s( p)]+ﬁ\/n2—82—l—p—,n:|s|+1.|s|—|—2.. .

e [ s_P
- Le 2 4
» Modified p-dependent expression for Runge-Lenz vectors

» Combination of ‘Landau problem in fibre’ and ‘Coulomb
problem in base’
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Bound states and Clairaut’s theorem

Figure: Positive and negative mass TN
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Including Time
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Time-dependent Taub-NUT

Allow ¢ to vary with time and consider ds? = —dt? + grn(t).
With
V =¢(t) + —,
the Ricci scalar is
2r d?e

o= (e(t)r + L) dt?

and the Ricci tensor is

LY

Ric,, = diag(—-2.1,1,—-1,1)
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Time-dependent Taub-NUT

Solution of 4+1 vacuum Einstein equation:
e=at+p5, o,BelR.

(First in Gibbons, LU and Pope, BraneWorlds in Collision, Phys. Rev. Lett. 94
(2005) 131602)

ol

Figure: Taub-NUT from flat space:c =t

NB: This interpolates between
smooth 4+1 Taub-NUT (t > 0) <+ R® «ssingular 5 Taub-NUT (t < 0)
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Time-dependent Maxwell fields

The gauge field
_p(t)  e(t)r
A= o ar i L™

satisfies the Maxwell equation d x dA = 0 iff

p=0, ¢ = 0.
Conclusion: Adiabatic time evolution
e(t) = at + f, p(t) =~t+46

solves Einstein and Maxwell - but not coupled Einstein-Maxwell.
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Time-dependent Dirac zero modes

Allowing ¢ and p to vary linearly, the Dirac equation for
time-dependent spinors is

of O 1 €r
o= 4 _ =0
1 (i)t+2f:r+l_)w+w’°w

Obtain exact adiabatic solutions if j is fixed and p is constant and
quantised:

p(t) = (2/+1)
Solution have non-intergrable adiabatic form

- j
r! e(t)r ; :

SE+N-PIDV R §™ gzl

e(r+ L e

m=—J

r+ m=—j
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Time dependent spin 1/2 states
The picture for p = 2, j = 1/2 doublet carries over to time-dependent
case: with

c(t,r) = ; w(t,r,z)=c(tr)z,
{(1‘)-1-%

the spin 1/2 states are again

a 1wy + ai w
-3 1(;# y W2
Vi (r.zi.20) =
1 (r.21, 22) 0
0
1_
I SR
—
0.8} //
e
/
0.6+
0.4 |
0.2}
L R
1 2 3 4 5 [} 7 8

Pirsa: 16040063 Page 30/38



Length scales and Dirac’s Large Number Hypothesis
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Atomic units

Sete =1t.

o) ,
Lra2
tr + L3

ds® = (f—l—%) d;2+

Asymptotic radius of the circle (= curvature radius of U(1) invariant
surface at NUT) is

L= —
"V

In the geometric model of the electron this is the classical electron
radius
e

L, = ~3x 10" "®m
T mec? %
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The Large Number Hypothesis

The ratio
Lm ~ 1047,

Lm

is one of Dirac’s large numbers and should related to age of the
universe in atomic units (LNH):

Ly = thy,.

This is what our model predicts!
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Comparison with the Schwarzschild instanton
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Schwarzschild geometry revisited

In standard Schwarzschild coordinates

ds? = r?(do? + sin® 0d¢?) + lvdr2 +4L2Vdy?, V=1- é
Use ‘fibre radius’ as radial coordinate instead:
2
ds® = ['_z(dﬁ"2 + sin®? 0d$?) + 4 dc” ; +4c”dye.

() (- 5)

Fibre geometry is that of Taub-NUT!

los
0.0
-0.5

05
0.0
]
10
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Gauged Dirac operator

Twisting Dirac operator by abelian instanton
= _%p sinfdf A d¢ + %dr/\ dy, pE€Z,

leads to p?-dimensional kernel: |p| copies of |p|-dimensional irrep of
SU(2).

Zero-modes in complex coordinates on S? (g = 1 + |z|?):

0
0

—inx AN n_3 — +n+l A 11— p—1 k ) sl
e—inxehgz—3el—P z)quz( p)Zk=0 axz
0

U=
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Spectrum of gauged Laplace operator

N | E(10,4,N) | Aforj=5 | Aforj=6 | Aforj=7
5 0.3095 0.3133 0.5107 0.6371
6 0.4984 0.5008 0.6290 0.7153
7 0.6208 0.6223 0.7097 0.7711
8 0.7041 0.7051 0.7670 0.8122
9 0.7630 0.7637 0.8091 0.8432
10 0.8061 0.8066 0.8409 0.8672
11 0.8386 0.8390 0.8654 0.8861
12 0.8636 0.8639 0.8846 0.9013
13 0.8833 0.8835 0.9001 0.9136
14 0.8990 0.8992 0.9127 0.9238
15 0.9118 0.9119 0.9230 0.9323

Table: TN approximation and numerically computed eigenvalues for ES
Laplacian forp =10, n= -8 andj = 5,6,7.
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Taub-NUT is naturally a smooth model of a unit-charge and
fermonic particle

Exact adiabatic solution of Einstein, Maxwell and Dirac equation
Quantisation of parameters from dynamics
Time-dependent model of the electron in spirit of Dirac’s LHN

Generalisation to multi-center Taub-NUT would allow study of
multi-electron states
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