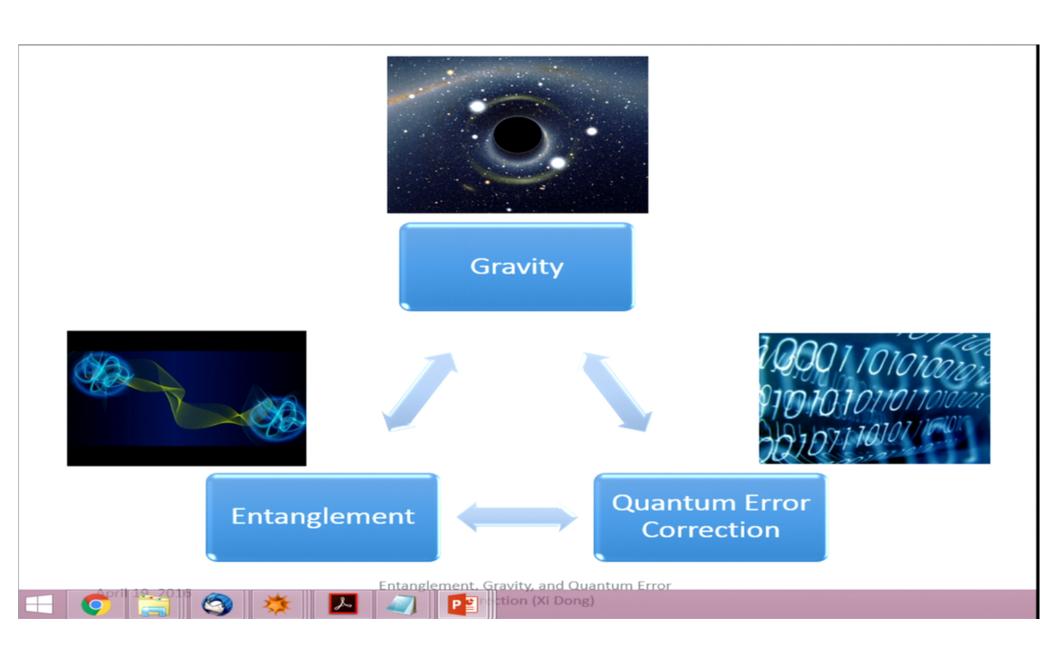
Title: Entanglement, Gravity, and Quantum Error Correction

Date: Apr 19, 2016 02:00 PM

URL: http://pirsa.org/16040057

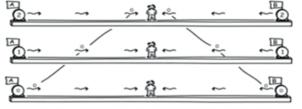
Abstract: Over the last few years it has become increasingly clear that there is a deep connection between quantum gravity and quantum information. The connection goes back to the discovery that black holes carry entropy with an amount given by the horizon area. I will present evidence that this is only the tip of the iceberg, and prove that a similar area law applies to more general Renyi entanglement entropies. To demonstrate the simplicity of this prescription, I will use it to calculate the mutual Renyi information between two disks of arbitrary dimension. Furthermore, I will provide quantum corrections to the area law and use it to solve the following important problem: what region of the dual spacetime is described by a subregion in a holographic theory? The answer to this question lies in a new perspective that I will advocate: holography is a quantum error correcting code.

Pirsa: 16040057 Page 1/34



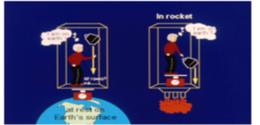
Pirsa: 16040057 Page 2/34

Breakthroughs inspired by surprises



Special Relativity:

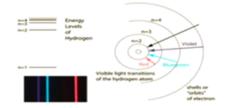
The speed of light is identical for all observers.



• General Relativity:

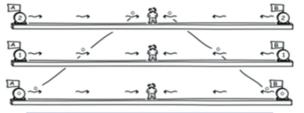
Gravity is indistinguishable from acceleration.

Energy is "quantized."



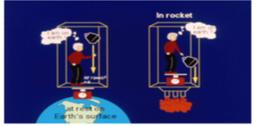
Pirsa: 16040057 Page 3/34

Breakthroughs inspired by surprises



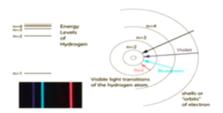
Special Relativity:

The speed of light is identical for all observers.



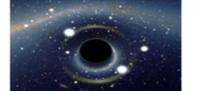
General Relativity:

Gravity is indistinguishable from acceleration.



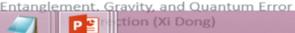
Quantum Mechanics:

Energy is "quantized."



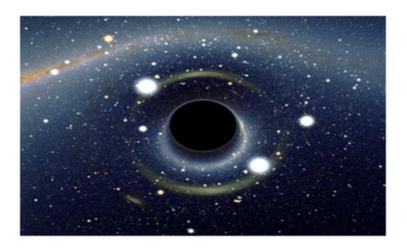
Quantum Gravity (?):

Entropy is given by the area.



Pirsa: 16040057 Page 4/34

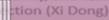
Bekenstein-Hawking entropy for black holes ['73, '75]



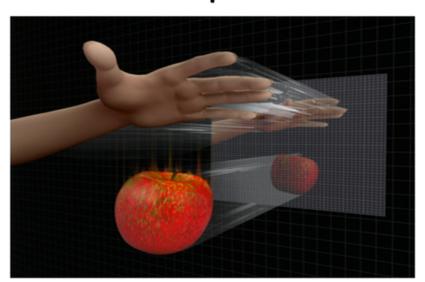
$$S = \frac{kc^3 \text{Area(Horizon)}}{4G_N \hbar}$$

- Incorporates quantum mechanics, gravity, special relativity, holography, and statistical mechanics.
- Led to much progress in understanding quantum gravity, e.g. holographic principle. ['t Hooft '93; Susskind '94]

ntanglement, Gravity, and Quantum Error



Anti-de Sitter/Conformal Field Theory Correspondence



Quantum gravity in AdS _{d+1} (bulk)	Holographic CFTs on ∂ AdS _{d+1} (boundary)
Isometry group $\mathcal{O}(d,2)$	Conformal group $O(d,2)$
Black hole states	Thermal states
Gauge symmetry	Global symmetry
States and operators	States and operators

- Best-understood model of quantum gravity
- Concrete example of emergent spacetime/gravity
- Also known as gauge/gravity duality
- Framework for generalizing area law beyond black holes

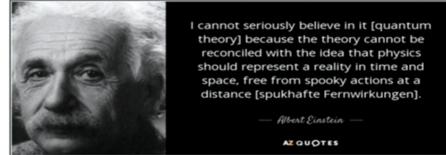
Entanglement, Gravity, and Quantum Error

ction (Xi Dong)

Pirsa: 16040057 Page 6/34

Quantum entanglement

- Correlation between subsystems
- "Spooky action at a distance"
- Simplest example:



• Entanglement entropy:

$$S \stackrel{\text{def}}{=} -\text{Tr}(\rho \ln \rho)$$

For example:

$$\rho = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} \text{ gives } S = \ln 2$$

For 200 spins, density matrix ρ has 2^{400} elements, more than the total number of atoms in our universe.

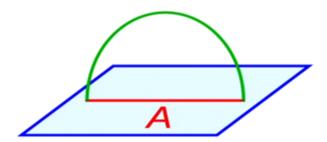
tion (Xi Dong)

Pirsa: 16040057 Page 7/34

Holographic Entanglement Entropy

A remarkably simple prescription for von Neumann entropy:

$$S = \frac{\text{Area(Minimal Surface)}}{4G_N}$$



[Ryu & Takayanagi '06]

Recall the definition:

$$S \stackrel{\text{def}}{=} -\text{Tr}(\rho_A \ln \rho_A)$$

This is only the tip of the iceberg!

Entanglement, Gravity, and Quantum Error

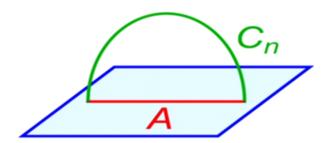
ction (Xi Dong

Pirsa: 16040057 Page 8/34

Holographic Renyi Entropy

A simple and powerful prescription for Renyi entropy:

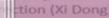
$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$



[XD 1601.06788]

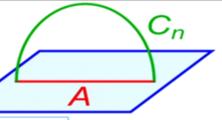
Gravity dual of Renyi entropy is a cosmic brane!

Entanglement, Gravity, and Quantum Error



Pirsa: 16040057 Page 9/34

Area Law for Renyi Entropy



$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$

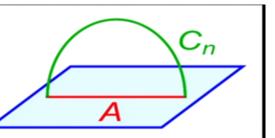
• Renyi entropy $S_n \stackrel{\text{def}}{=} \frac{1}{1-n} \ln \operatorname{Tr} \rho_A^n$

[XD 1601.06788]

• For example:
$$\rho = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \text{ gives } S_n = \frac{1}{1-n} \ln(\alpha^n + \beta^n)$$

- One-parameter generalization of von Neumann entropy
- Is a measure of entanglement containing much richer information about the state than von Neumann entropy
- Possible to measure in experiments or study numerically
- [Islam et al. '15] But still very complicated for large systems

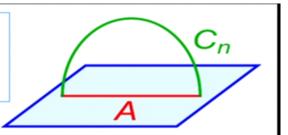
$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$



- Cosmic brane similar to minimal surface; they are both codimension-2 and anchored at edge of A.
- But brane is different in having tension $T_n = \frac{n-1}{4nG_n}$.
- Backreacts on ambient geometry by creating conical deficit angle $2\pi \frac{n-1}{n}$.
- Useful way of getting the geometry: find solution to classical action $I_{\text{total}} = I_{\text{bulk}} + I_{\text{brane}}$.
- As $n \to 1$: probe brane settles at minimal surface.
- One-parameter generation of Ryu-Takayanagi.

ntanglement, Gravity, and Quantum Error

$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$



- Why does this area law work?
- Because LHS is a more natural candidate for generalizing von Neumann entropy:

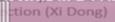
$$\widetilde{S_n} \stackrel{\text{def}}{=} n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = -n^2 \partial_n \left(\frac{1}{n} \ln \operatorname{Tr} \rho_A^n \right)$$

This is standard thermodynamic relation

$$\widetilde{S_n} = -rac{\partial F_n}{\partial T}$$
 with $F_n = -rac{1}{n} \ln \mathrm{Tr}
ho_A^n$, $T = rac{1}{n}$

 ${
m Tr}
ho_A^n$ is partition function w/ modular Hamiltonian $-\ln
ho_A$

• $\widetilde{S_n} \geq 0$ generally. [Beck & Schögl '93] Automatic by area law!



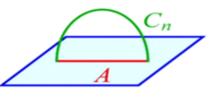
$$n^2 \partial_n \left(\frac{n-1}{n}S_n\right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$
Can be derived from gauge/gravity duality:

[XD 1601.06788]

Replica Trick

Classical
Mechanics

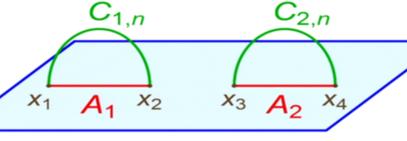
Area Law for



Renyi Entropy

Pirsa: 16040057 Page 13/34

Example: Renyi entropy for two disks



$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$

in holographic CFT

- For one disk, it was calculated by exploiting a symmetry and finding hyperbolic black hole solutions.
 [Hung, Myers, Smolkin & Yale '11]
- Area-law prescription is more powerful: does not need symmetry; applies to arbitrary regions.
- For two disks, we study mutual Renyi information

$$I_n(A_1, A_2) \stackrel{\text{def}}{=} S_n(A_1) + S_n(A_2) - S_n(A_1 \cup A_2)$$

Entanglement, Gravity, and Quantum Error

Example: Renyi entropy for two disks



$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$

- Two phases depending on the separation.
- Mutual information $I_{n=1}$ vanishes in large-distance phase, but I_n is generally nonzero.
- Two cosmic branes feel backreaction of each other.
- To linear order in $\delta n=n-1$, backreaction is weak:

$$I_n = \frac{2^{3-d} \pi^{d+1} C_T \delta n}{d(d^2 - 1) \Gamma\left(\frac{d-1}{2}\right)^2} \frac{2-x}{x} B\left(\left(\frac{x}{2-x}\right)^2; \frac{d+1}{2}, \frac{2-d}{2}\right) + O(\delta n^2)$$

[XD 1601.06788]

Entanglement, Gravity, and Quantum Error

Example: Renyi entropy for two disks

 $C_{1,n}$ $C_{2,n}$ in holographic CFT

$$x_1$$
 A_1 x_2 x_3 A_2 x_4 $n^2 \partial_n \left(\frac{n-1}{n}S_n\right) = \frac{\text{Area(Cosmic Brane}_n)}{4G_N}$

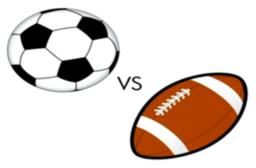
$$I_n = \frac{2^{3-d}\pi^{d+1}C_T\delta n}{d(d^2-1)\,\Gamma\!\left(\!\frac{d-1}{2}\!\right)^2} \frac{2-x}{x} B\left(\!\left(\!\frac{x}{2-x}\!\right)^2; \frac{d+1}{2}, \frac{2-d}{2}\!\right) + O(\delta n^2)$$

- Here $x = \frac{(x_1 x_2)(x_3 x_4)}{(x_1 x_3)(x_2 x_4)}$ is a cross ratio. [XD 1601.06788]
- C_T is a central charge appearing in stress tensor two-point function.
- Applies to any dimension; agrees with a CFT calculation for the special case of d=2 in e.g. [Perlmutter '15].

Pirsa: 16040057 Page 16/34

Shape dependence of Renyi entropy

• Universal part of Renyi entropy in 4D CFT depends simply on shape of entangling surface Σ :



$$S_n^{\text{univ}} = \left[\frac{f_a(n)}{2\pi} \int_{\Sigma} R_{\Sigma} + \frac{f_b(n)}{2\pi} \int_{\Sigma} \operatorname{tr} K_{\text{traceless}}^2 - \frac{f_c(n)}{2\pi} \int_{\Sigma} C^{ab}{}_{ab} \right] \ln \epsilon$$

[Fursaev '12]

• For von Neumann entropy (n=1):

$$f_a(1) = a$$
, $f_b(1) = f_c(1) = c$

[Solodukhin '08]

A conjecture:

$$f_b(n) = f_c(n)$$

[Lee, McGough & Safdi '14] [Lewkowycz & Perlmutter '14] [Bueno & Myers '15]

[Bianchi, Meineri, Myers & Smolkin '15]

- Ori 13-2018 (S)

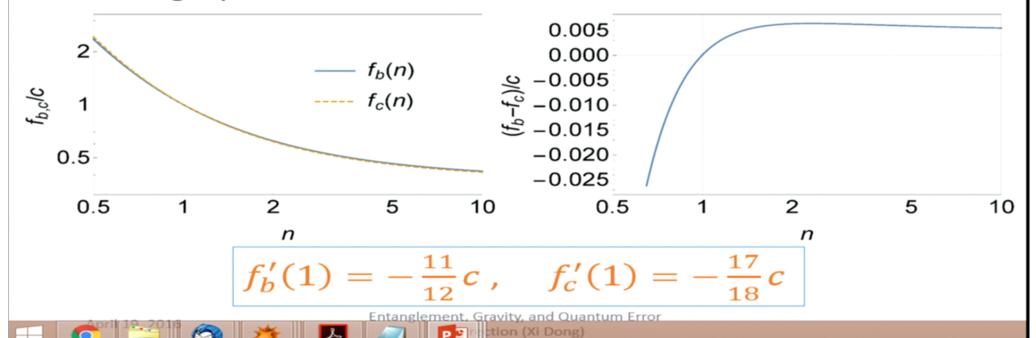
ction (Xi Dong)

Pirsa: 16040057

Shape dependence of Renyi entropy

$$S_n^{\text{univ}} = \left[\frac{f_a(n)}{2\pi} \int_{\Sigma} R_{\Sigma} + \frac{f_b(n)}{2\pi} \int_{\Sigma} \operatorname{tr} K_{\text{traceless}}^2 - \frac{f_c(n)}{2\pi} \int_{\Sigma} C^{ab}{}_{ab} \right] \ln \epsilon$$

• Unfortunately the $f_b(n) = f_c(n)$ conjecture fails in holographic CFTs: [XD 1602.08493]



Pirsa: 16040057

So far:

We used the area law to understand structure of quantum entanglement and to efficiently study Renyi entropies.

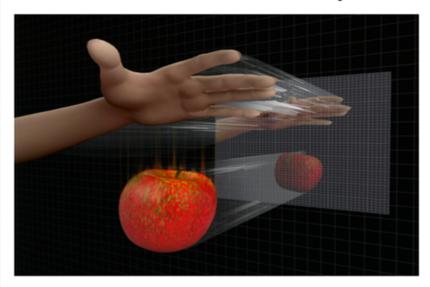
Rest of the talk:

How to use it to understand quantum gravity?

To motivate the question, we need to take a step back.

Pirsa: 16040057 Page 19/34

AdS/CFT: our best-understood model of quantum gravity [Maldacena '97]



Quantum gravity in AdS _{d+1}	Holographic CFTs on ∂AdS _{d+1}
Isometry group $\mathcal{O}(d,2)$	Conformal group $O(d,2)$
Black hole states	Thermal states
Gauge symmetry	Global symmetry
States and operators	States and operators

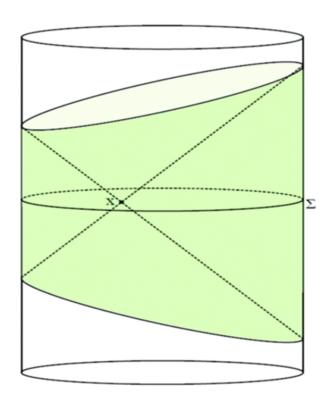
$$\lim_{r \to \infty} r^{\Delta} \phi(r, x) = O(x)$$
$$\phi(r, x) = ?$$

- What operator in CFT represents a local bulk operator?
- Answering this question helps us reconstruct the bulk.

Entanglement, Gravity, and Quantum Error

ction (Xi Dong)

Global AdS reconstruction



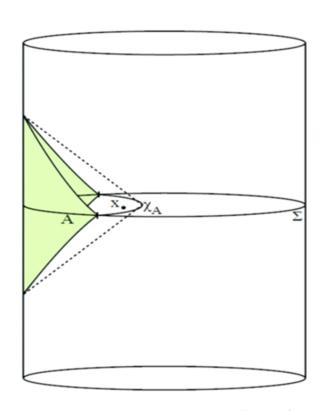
$$\phi(x) = \int_{\mathbb{S}^{d-1} \times \mathbb{R}} dY K(x; Y) \mathcal{O}(Y)$$

[Hamilton, Kabat, Lifschytz, Lowe '06]

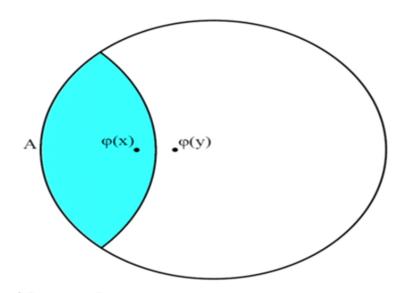
Entanglement, Gravity, and Quantum Error

Pirsa: 16040057 Page 21/34

AdS-Rindler reconstruction for disk A



$$\phi(x) \sim \int_{D[A]} dY K_A(x;Y) \mathcal{O}(Y)$$

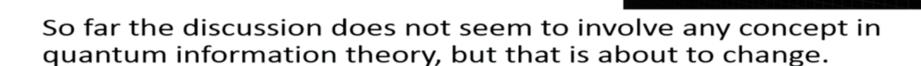


Entanglement, Gravity, and Quantum Error

ction (Xi Dong)

Pirsa: 16040057 Page 22/34

What region of the dual spacetime is described by a general subregion in a holographic CFT?

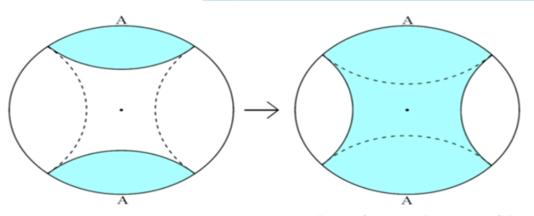


Pirsa: 16040057 Page 23/34

Reconstruction conjecture for entanglement wedge

- Entanglement wedge is defined as a bulk region bounded by the Ryu-Takayanagi minimal surface.
- It may change discontinuously.
- Conjecture:

Any bulk operator in entanglement wedge of A may be represented as a CFT operator on A.



[Czech, Karczmarek, Nogueira & Van Raamsdonk '12] [Wall '12] [Headrick, Hubeny, Lawrence & Rangamani '14]

Entanglement, Gravity, and Quantum Error

Pirsa: 16040057

Conjecture:

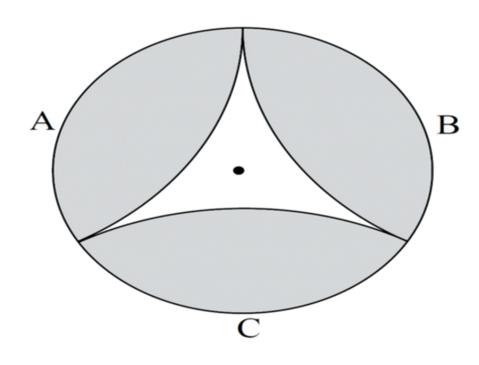
Any bulk operator in entanglement wedge of A may be represented as a CFT operator on A.

Ingredients for proving the conjecture:

- > Holography as a quantum error correcting code
- CFT relative entropy = bulk relative entropy
- ⇒Reconstruction theorem for entanglement wedge

Pirsa: 16040057 Page 25/34

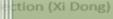
Puzzle about AdS-Rindler reconstruction



- $\phi(x)$ can be represented on $A \cup B$, $B \cup C$, or $A \cup C$.
- Obviously they cannot be the same CFT operator.
- Defining feature for quantum error correction.
- Holography is a quantum error correcting code.

[Almheiri, XD, Harlow '14]

Entanglement, Gravity, and Quantum Error



Pirsa: 16040057 Page 26/34

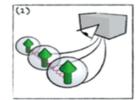
Quantum error correction

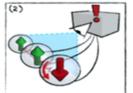
- Alice wants to send a qutrit by mail.
- She encodes it into the Hilbert space of 3 qutrits.

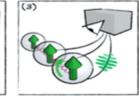
$$|\widetilde{0}\rangle = \frac{1}{\sqrt{3}} (|000\rangle + |111\rangle + |222\rangle)$$

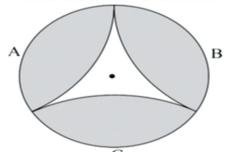
$$|\widetilde{1}\rangle = \frac{1}{\sqrt{3}} (|012\rangle + |120\rangle + |201\rangle)$$

$$|\widetilde{2}\rangle = \frac{1}{\sqrt{3}} (|021\rangle + |102\rangle + |210\rangle)$$



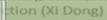






- These states span the code subspace.
- In holography, code subspace contains bulk states.

[Almheiri, XD, Harlow '14]



Pirsa: 16040057

Quantum corrections to area law

$$n^2 \partial_n \left(\frac{n-1}{n} S_n \right) = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N}$$

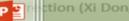
- Area law for Renyi entropy receives both higher derivative corrections and quantum corrections.
- This is analogous to case of entanglement entropy.

[XD '13; XD & Miao '15] [Barrella, XD, Hartnoll & Martin '13; Faulkner, Lewkowycz & Maldacena '13]

Quantum corrections in terms of bulk Renyi entropy:

$$\widetilde{S_n} = \frac{\text{Area}(\text{Cosmic Brane}_n)}{4G_N} + \widetilde{S_n}_{,\text{bulk}}$$

[XD 1601.06788]



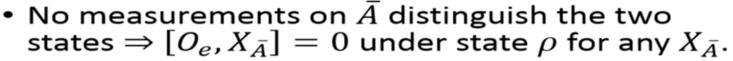
Pirsa: 16040057

Reconstruction theorem for entanglement wedge

[XD, Harlow & Wall 1601.05416]

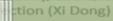
Any bulk operator O_e in the entanglement wedge e of Amay be reconstructed as a CFT operator O_A on A via quantum error correction, as long as the relative entropy of any two bulk states satisfies $S(\rho_A|\sigma_A) = S_{\text{bulk}}(\rho_e|\sigma_e)$

Intuitive proof:



• O_e must have a CFT realization as O_A on A.

Via theorem in [Almheiri, XD, Harlow '14] Entanglement, Gravity, and Quantum Error



What We Learned

- Area law is universal in quantum gravity and is not restricted to black hole or entanglement entropy.
- It is a powerful statement for Renyi entropy, generalizing the Ryu-Takayanagi prescription.
- Quantum information theory enables us to understand the basic dictionary of quantum gravity.
- Viewing holography as a quantum error correcting code, we can analyze how to "build spacetime from entanglement".

Pirsa: 16040057 Page 30/34

Near-Future Directions

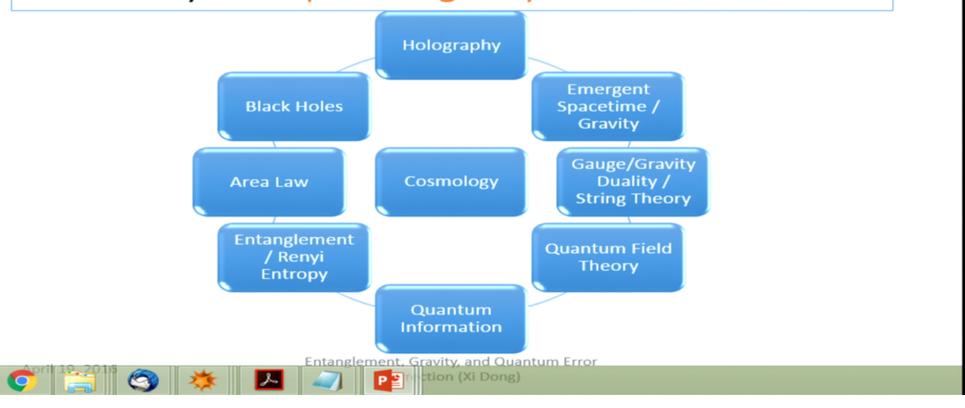
- Renyi entropy has until now been more difficult to study than entanglement entropy. The area law opens a new window for efficiently studying Renyi entropy in strongly coupled systems.
- Is the natural entropy $\widetilde{S_n}$ a more useful measure of quantum entanglement and information?
- Simple explicit reconstruction of operators in the entanglement wedge?
- Derive the Engelhardt-Wall conjecture for quantum correction to all orders in 1/N from first principle.
 [XD & Lewkowycz, to appear]

Entanglement, Gravity, and Quantum Error

Pirsa: 16040057 Page 31/34

Long-Term Outlook

- What quantum field theories give rise to emergent, weakly coupled gravity?
- What are their universal features that allow us to eventually solve quantum gravity in our universe?



Pirsa: 16040057 Page 32/34

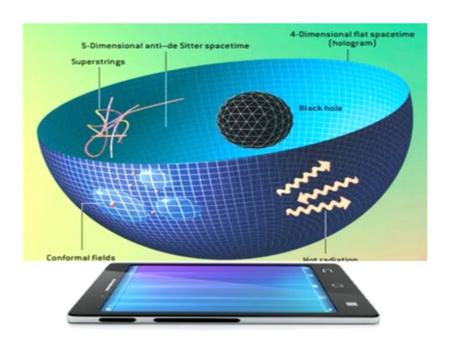
Computing in the Cloud

Entanglement, Gravity, and Quantum Error



Page 33/34 Pirsa: 16040057

Computing in the Bulk (or Black Hole)



Entanglement, Gravity, and Quantum Error

ction (Xi Dong)

Pirsa: 16040057 Page 34/34